

Metal Uptake in Northern Constructed Wetlands

YUKON RESEARCH CENTRE Yukon College

This publication may be obtained from:

Yukon Research Centre, Yukon College 520 College Drive P.O. Box 2799 Whitehorse, Yukon Y1A 5K4 867.668.8895 1.800.661.0504 yukoncollege.yk.ca/research

Recommended citation:

Stewart K. and Janin A. 2015. Metal Uptake in Northern Constructed Wetlands, March 2015, 32 p.

EXECUTIVE SUMMARY

Constructed wetlands (CWs) have been employed as passive treatment systems for metal contaminated mine drainage in Canada. However, relatively few CWs have been documented in northern environments and further studies are needed to understand the metal removal mechanisms in wetlands operating under cold climates, with short growing seasons. The goal of this study was to evaluate the performance of laboratory-scale CWs for the removal of Cd, Cu, Se and Zn, as well as, to evaluate Cu and Se uptake in two northern plant species (Carex aquatilis and Juncus balticus). Eight laboratory-scale wetlands were constructed using local materials, including locally harvested plant species and microorganisms and operated under northern summer conditions for 10 weeks. The CWs were fed continuously with synthetic influent containing Cd, Cu, Fe, Se and Zn at concentrations predicted at mine closure. Average removal efficiencies of 96%, 99%, 79% and 97% were observed for Cd, Cu, Se and Zn respectively. There were no significant differences in plant establishment or growth between our CW treatments, or any evidence of increasing Cu uptake with increasing contaminant availability in either northern plant species. Increased belowground uptake of Se was observed at the higher influent concentration in the Pit treatment. However, overall our study suggests that uptake of contaminants by these two northern species is very minor (<0.06% Cu and <0.11% Se, except for C. aquatilis in one treatment <0.2% Cu and <0.4 % Se) and likely does not pose a risk to the surrounding environment. We conclude that CWs could operate as successful passive treatment solutions in a northern environment, at least during the summer months, pending further studies on winter treatment. Further studies are required to examine seasonal metal removal rates in relation to rates of sulfate reduction, carbon consumption, metal precipitation and sorption. In addition, potential contaminant uptake and the influence of functional plant characteristics on metal removal in a suite of northern plant species would further assist in the development of large-scale long-term northern CWs.

ACKNOWLEDGEMENTS

This research was funded by a NSERC Applied Research and Development grant held with Casino Mining Corporation. We would like to thank Andre Sobolewski of Clear Coast Consulting for his expertise and contribution to the project. Michel Duteau, Isobel Ness and Hiromi Moriya contributed to the project through field, greenhouse and laboratory assistance.

Table of content

EXECU	JTIVE SUMMARY	1
ACKN	OWLEDGEMENTS	2
1.	BACKGROUND	6
2.	MATERIAL AND METHODS	7
 2.1. 2.2. 2.3. 2.4. 2.5. 	Laboratory-scale wetland setup Synthetic influent preparation Laboratory-scale constructed wetlands operation and monitoring Contaminants Analysis Statistical analyses	.10 .11 .12
3.	RESULTS	.13
3.1. 3.2. 3.3.	Heavy metal removal from contaminated waters Establishment, growth and metal uptake of northern wetland plants Cu and Se distribution within the CWs	.19
4.	SUMMARY OF KEY FINDINGS	.25
5.	RECOMMENDATIONS FOR FUTURE WORK	.26
6.	REFERENCES	. 27
APPEN	NDIX 1 – IN-HOUSE METAL ANALYSIS QC REPORT	.32

Table of figures

	Constructed Wetland (CW) study design using two plant species (<i>Carex aquatailis</i> and <i>balticus</i>) and 4 different synthetic influents (TMF, Pit, Pit(MeOH) and Control) for a f 8 laboratory-scale CWs
Figure 2 and Jui	Laboratory-scale constructed wetlands with northern plant species, <i>Carex aquatailis</i> ncus balticus
Figure 3	Sampling <i>Carex aquatailis</i> and <i>Juncus balticus</i> for the constructed wetlands from a I wetland located on McIntyre Creek in Whitehorse, YT
Figure 4	Hydraulic conductivity testing to determine the appropriate ratio of peat, sand and avel to achieve a 5 ml/min flow rate with a hydraulic residence time of approximately
5 days.	. 10
	Synthetic influents or tap water being pumped at the bottom of the substrate using a channel peristaltic pump (Masterflex pump, head and C-flex tubing) at 5 ml/min with rface vertical flow
standa the cor	Cd (a), Cu (b), Se (c) and Zn (d) concentrations in CWs with C. aquatilis (Carex) and J. (Juncus) fed with Control, TMF, Pit or Pit(MeOH) waters. Bars represent means with rd error. There were no significant differences in the outlet concentrations for any of ntaminants between the wetland treatments (repeated measures ANOVA with Tukey oc (p>0.05 for all comparisons). Note the broken Y-axis
treatm signific	pH of outlet waters for each CW treatment monitored from week 4 to week 10 of the tory-scale trial. At week 7 significant increases in pH were observed for the Pit(MeOH) ent compared to all other treatments. Similarly, both the TMF and Pit treatment had cant increases in pH compared to the control (ANOVA with TukeyHSD, p<0.05 for all risons)
Signific CWs co	Sulfate concentration in the inlet and outlet waters of the Pit and Pit(MeOH) CWs aquatilis (Carex) and J. Balticus (Juncus) monitored over the 10 week trial. cantly higher sulfate consumption (i.e. Inlet-Outlet for each CW) for both Pit(MeOH) ompared with the Carex Pit treatment were detected (ANOVA with Tukey posthoc, for Carex and p=0.02 for Juncus)
Figure 9 only in	Black deposits on the wetland surface, characteristic of sulfide precipitates found the Pit(MeOH) CW treatment. In addition, an odiferous evidence of H ₂ S from the OH) was present
TMF, P above (ANOV treatm (ANOV	Copper and Selenium content in <i>C. aquatilis</i> (Carex) and <i>J. balticus</i> (Juncus) in ucted laboratory-scale wetlands after 10 weeks of operation with tap water (Control), bit or Pit (MeOH) synthetic waters. There was no significant difference in Cu content of or belowground biomass across the treatments for either northern plant species (A, p=0.51). We detected significantly higher Se in belowground biomass in the Pit tent compared with the control and pit (MeOH) treatments for both Carex and Juncus (A, p<0.05 for all comparisons). Bar represent means with standard error. Different indicate significantly different means

List of tables

Table	Average and standard deviation for pH, SO ₄ , Cd, Cu, Se and Zn concentrations in the
	influents between Week 2 and 10 for each of the CW treatments. Values below
	quantification limit are assumed to be equal to the quantification limit of 0.05 ug Cd/L, 0.6 ug
	Cu/L, 0.7 ug Se/L and 0.4 ug Zn/L 11
Table	2 Average and standard deviation of root and shoot length and biomass (dry weight) of
	Carex aquatilis (Carex) and Juncus balticus (Juncus) after 10 weeks of growth in constructed
	wetlands (CWs) treated with either Control, Pit, TMF and Pit(MeOH) waters. There were no
	significant differences in root and shoot length or biomass between the CW treatments for
	either species (ANOVA, p>0.05 for all comparisons) 20
Table	2 Distribution of total Copper and Selenium partitioned by water, plants and substrate for
	each constructed wetland (CW) treatment and plant species (Carex aquatilis (Carex) and
	Juncus balticus (Juncus)) after 10 weeks of treatment with synthetic contaminated waters.
	Values are given in mg Cu or Se and values in parentheses are percentile amounts of total
	mass of Cu or Se in the CWs

1. BACKGROUND

Constructed wetlands (CWs) are biogeochemical systems where an effluent flows through a plant-soil matrix and natural processes reduce pollutant levels to a given discharge limit (Bathia and Goyal 2014). CWs have been applied for treatment of municipal, agricultural and industrial effluents with complex physical, chemical and/or biological mechanisms (Kaldec and Knight 1996, Kaldec and Wallace 2008). Once established, CWs can become self-sustaining ecosystems with the plants providing yearly renewal of carbon to fuel microbial activity (Contango Strategies 2014). CWs have been proposed as a sustainable and long-term solution for water treatment at mine closure in Canada due to their low maintenance and operational cost requirements and high removal capacity (Eger and Kairies Beatty 2013; Sheoran and Sheoran 2006). However, relatively few wetlands have been used in northern environments and further studies are needed to design systems that will best fit the remediation objectives and environmental constraints (Kaldec and Reddy 2001).

The processes involved in metals removal from mine-impacted water include, but are not limited to, reduction/oxidation, precipitation, bio-sorption, bioaccumulation and volatilization (Sobolewski 1999, Guittonny-Philippe et al 2014). Microbial sulfate reduction processes and metal precipitation as sulfide salts in the anaerobic zone of the substrate is considered a major mechanism for metal sequestration in CWs (Arroyo et al 2013). While wetland sediments are known to act as a sink for heavy metals (Sheoran and Sheoran 2006, Baldwin and Hodaly 2003, August et al 2002), bioaccumulation in plants is also considered to some extent a metal removal pathway. Metal uptake by plants growing in wetlands treating mine-impacted waters has been sparsely studied with records of metal uptake by Carex aquatilis and C. rostrata (August et al 2002, Stoltz and Greger 2002, Nyquist and Greger 2009), Juncus maritimus and J. effuses (Conesa et al 2011, Rahman et al 2011), Typha latifolia and T. domingensis (Mitsh and Wise 1998, Taylor and Crowder 1983, Maine et al 2006), Phragmites australis (Batty and Younger 2004, Stoltz and Greger 2002, Nyquist and Greger 2009) Eichhornia crassipes (Maine et al 2006) and Salix Sp. (Stoltz and Greger 2002). In most of these cases heavy metals were reported to be largely found in plant roots with minimal or no uptake into shoots. Metal uptake potential in aboveground shoots should be well characterized in CWs that are used for mine closure, as it could pose a risk by exposing foraging wildlife to contaminants. Uptake by wetlands plants can be strongly affected by the water chemistry, the plant species (Deng et al 2004, Sheoran 2006), as well as, the redox conditions and geochemistry in the wetland substrate (Sobolewski 2010).

Implementation of two large CWs has been proposed as part of the billion-ton Copper-Gold Casino deposit project, located in the Yukon, 300 km northwest of Whitehorse. CWs have been proposed as a passive option for remediation to mitigate the risk of metals discharge into the downstream environment. One 10 ha CW has been proposed to treat discharge from the 3.14 km² open pit, which then flows into the proposed 1,120 ha Tailings Management Facilities (TMF). A second 6 ha CW has been proposed down-gradient of the TMF for final water treatment before release into the Casino Creek watershed (Casino Mining Corp 2014). This plan was submitted earlier this year for revision under the Yukon

Socio-Economic and Environmental Assessment Act, one of the regulations framing environmental permitting in Yukon Territory. However, very few data on northern wetlands with northern plants are available in the literature and a deeper understanding of northern wetland systems and plant uptake capacity is required for assessment and development of passive water treatment in the North.

The three objectives of this study were to: 1) Assess the short term efficiency of laboratoryscale CWs for mine effluents containing Cd, Cu, Fe, Se and Zn, 2) assess the potential uptake of Cu and Se by two northern wetlands plants, and 3) examine the influence of a methanolamendment on metals removal by the laboratory-scale CWs.

2. MATERIAL AND METHODS

2.1. Laboratory-scale wetland setup

Eight laboratory-scale CWs were established in late June 2014 in the Yukon Research Centre greenhouse (Fig. 1). Each wetland consisted of a 47 L tote filled with 35 L soil substrate (13 cm height) made up of a homogeneous mixture of 5% (v/v) peat (Premier[®], PremierTech Horticulture, Rivière-du-Loup, Quebec), 55% (v/v) washed sand (GE Cement plant, Whitehorse) and 40% (v/v) washed pea gravel (GE Cement plant, Whitehorse) (Fig. 2). Hydraulic conductivity tests were conducted to achieve the appropriate ratio of peat, sand and pea gravel to allow for a 5 ml/min flow rate with a hydraulic residence time of approximately 5 days (Fig. 3). Carex aquatilis and Juncus balticus, two plant species common in northern natural wetlands with different root oxygen exchange rates, were collected from a natural wetland located on McIntyre Creek in Whitehorse, YT (60°44'48.6"N 135°06'17.5"W) (Fig. 4). Eight plugs of either species containing rhizomes, roots and approximately 250 ml of natural wetland substrate were transplanted from the natural wetland into each laboratory-scale CW. Each wetland contained only one species; therefore, 4 wetlands contained C. aquatilis and 4 contained J. balticus. Two days after transplant, fertilizer was added (Alaska® Fish Fertilizer 5-1-1, Lilly Miller, dosage of 20 ml/m^{2}). The CWs were then saturated with tap water up to the level of the substrate surface and left undisturbed (no flow) for 2 weeks to allow the rhizomes to establish and the microorganisms within the transplanted substrate to incubate. Tap water was then circulated for another 2 weeks through the CWs. After 4 weeks of incubation with tap water, the aboveground biomass was removed at a height of 2 cm, leaving no shoots. Synthetic influents containing metals were then circulated through the CWs for 10 weeks and new shoot growth was monitored.

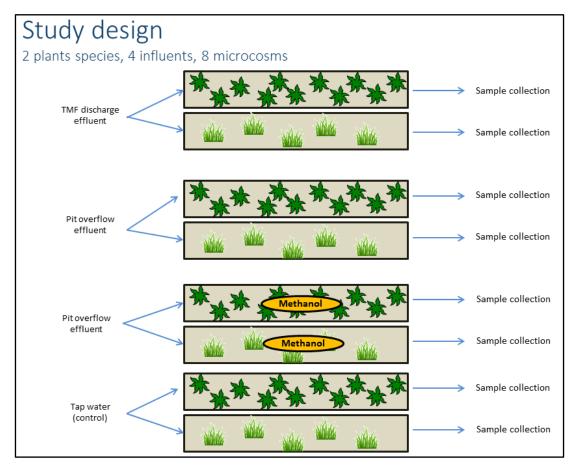


Figure 1 Constructed Wetland (CW) study design using two plant species (*Carex aquatailis* and *Juncus balticus*) and 4 different synthetic influents (TMF, Pit, Pit(MeOH) and Control) for a total of 8 laboratory-scale CWs.

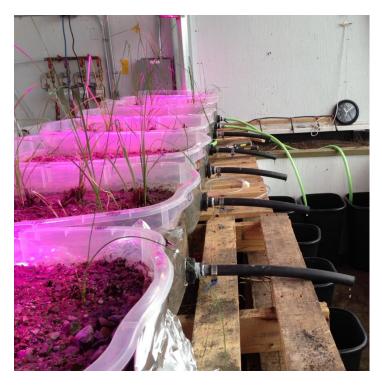


Figure 2 Laboratory-scale constructed wetlands with northern plant species, *Carex aquatailis* and *Juncus balticus*.

Figure 3 Sampling *Carex aquatailis* and *Juncus balticus* for the constructed wetlands from a natural wetland located on McIntyre Creek in Whitehorse, YT.

Figure 4 Hydraulic conductivity testing to determine the appropriate ratio of peat, sand and pea gravel to achieve a 5 ml/min flow rate with a hydraulic residence time of approximately 5 days.

2.2. Synthetic influent preparation

Synthetic influents were prepared weekly by dissolving $CdSO_4*8/3H_2O$ (Acros Organics, ACS Reagent), $CuSO_4*5H_2O$ (Fisher Scientific, Fisher Bioreagents), $FeSO_4*7H_2O$ (Fisher Scientific, Reagent Grade), SeO_2 (anhydrous; Acros Organics, 99.8%) $ZnSO_4*7H_2O$ (Acros Organics, ACS Reagent) and Na_2SO_4 (anhydrous; Fisher scientific; Lab Grade) in DI water. Four CWs each had different water treatments (4 water treatments x 2 species for a total of 8 CWs):

- i) TMF with metal concentrations that reflected the concentrations predicted at closure in the Tailings Management Facility,
- ii) Pit with metal concentrations predicted at closure in the open pit,
- iii) Pit(MeOH) with Pit metal concentrations and the addition of 1% MeOH (Fisher Scientific) added weekly and
- iv) City of Whitehorse tap water that was considered a Control treatment (Fig. 1).

pH was similar in all influents while Cd, Cu and Se concentrations were about twice in the Pit treatment as in the TMF treatment (Table 1). Cadmium, Se and Zn concentrations in the tap water Control were below quantification limits or quantified under 5% of the measured concentrations in TMF, Pit and Pit(MeOH) (Table 1). Cu concentrations were detected in tap water ($35.3 \pm 14.4 \text{ ug/L}$) that were approximately 30% of the concentrations found in the TMF influent.

Table 1 Average and standard deviation for pH, SO_4 , Cd, Cu, Se and Zn concentrations in the influents between Week 2 and 10 for each of the CW treatments. Values below quantification limit are assumed to be equal to the quantification limit of 0.05 ug Cd/L, 0.6 ug Cu/L, 0.7 ug Se/L and 0.4 ug Zn/L.

	Control	TMF	Pit	Pit(MeOH)
рН	7.9 ± 0.3	7.8 ± 0.1	7.9 ± 0.1	7.7 ± 0.1
Cd (ug/L)	0.07 ± 0.05	1.6 ± 0.9	6.1 ± 0.44	5.5 ± 0.74
Cu (ug/L)	35 ± 14	121 ± 33	644 ± 181	607 ± 192
Se (ug/L)	0.7 ± 0.0	2.8 ± 1.2	4.4 ± 1.7	4.5 ± 2.3
Zn (ug/L)	24 ± 3.7	525 ± 63	576 ± 53	540 ± 84
SO ₄ (mg/L)	37 ± 3.3	600 ± 243	610 ± 237	496 ± 215

2.3. Laboratory-scale constructed wetlands operation and monitoring

The 8 CWs were operated and monitored over 10 weeks following 4 weeks of incubation in a greenhouse under northern summer conditions. Temperature was 11° C with no light from 23:00-5:00 and 16° C with $175 \,\mu$ mol/m²/s of light from 5:00-23:00. Synthetic influents or tap water were pumped at the bottom of the substrate using a multi-channel peristaltic pump (Masterflex pump, head and C-flex tubing) at 5 ml/min with sub-surface vertical flow (Fig. 5). The hydraulic residence time was approximately 5 days. Effluents from the CWs were discharged into outlet collection containers. The volume of the effluent accumulated in the collection containers over a week were recorded while pH measurements and samples were collected weekly. Samples for total metal analysis were preserved with 5% HNO₃ (trace metal grade) and stored at 4°C and samples for sulfate analysis were stored frozen.

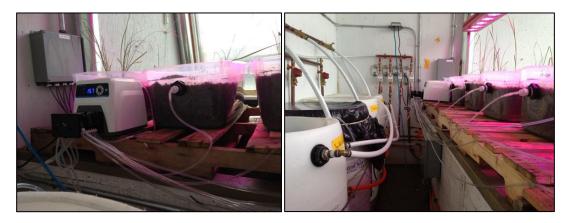


Figure 5 Synthetic influents or tap water being pumped at the bottom of the substrate using a multi-channel peristaltic pump (Masterflex pump, head and C-flex tubing) at 5 ml/min with sub-surface vertical flow.

At the end of the experiment period, Oxygen Reduction Potential (ORP) and pH were measured in the center of each CW at a depth of 5 cm and 10 cm from the outlet. CWs were drained and interstitial water that remained within the substrate was sampled and preserved with 5% HNO3 (trace metal grade) for total Cu and Se analysis. All plant materials were extracted from the wetland and above- and belowground biomass were carefully washed with DI water, brushing the materials to remove any remaining soil particles. Root and shoot length were recorded and dry biomass was determined following drying at 105°C for 72 hrs. Three replicates of live shoots and roots were further analyzed for metal content. Wetland substrates from each CW were thoroughly mixed, sampled and also analyzed for metal contents.

2.4. Contaminants Analysis

Total Cd, Cu, Se and Zn metal concentrations in effluents were measured using Perkin Elmer PinAAcle Atomic Absorption (AA) analyzer (Perkin Elmer, Waltham, MA). Cadmium, Cu and Se were analyzed by Graphite Furnace (GFAA) and Zn by Flame (FAA). The Quantification Limits (QL) used in this work have been defined for each element as $10-\sigma$ and are 0.05 ug Cd/L, 0.6 ug Cu/L, 0.7 ug Se/L and 0.4 ug Zn/L. Calibrations were completed on a daily basis using single element standards (SCP Science, Baie D'Urfé, QC), and blanks and mixed verification standards (Perkin Elmer, Waltham, MA) were analyzed every 15 samples. Up to $\pm 20\%$ deviation was tolerated for the verification standards at the low end of the calibration curve and up to ±10% on the high end of the calibration curve. Quality control reports and analysis details are reported in Appendix A. pH was measured using Oakton PCD650 meter (Vernon Hills, IL) with a double junction pH electrode. Sulfate was analyzed by spectrophotometry using a SmartChem 170[®] Automated Discrete Analyzer (Westco, Guelph, ON) according to the STM Method D516-90, 02. Biomass samples were digested with nitric acid (trace metal grade) according to the method described by Zarcinas et al (1987) while substrate samples were digested with aqua regia according to USEPA reference method 3050B.

2.5. Statistical analyses

All data were tested to meet the assumptions of ANOVA and log transformation and boxcox transformations were performed. Differences in contaminant outlet concentrations, pH and SO₄ consumption between CW treatments were examined using repeated measures ANOVA with TukeyHSD posthoc comparisons (significant differences indicated by p<0.05 for all comparisons). Due to independent replication for CW vegetation (i.e. *Carex aquatailis* and *Juncus balticus*) ANOVA was TukeyHSD posthoc comparisons (p<0.05) was used. All analyses were conducted in R (R package version 2.1.50). Mass balance calculations and partitioning of Cu and Se into CW elements (i.e. water, substrate and plants) was conducted by summing total Cu and Se contained in the plant (metal content in above and belowground biomass x biomass weight before and after the experiment), in the soil (metal content in the soil x dry weight of soil contained in each CW before and after the experiment including initial peat, natural substrate and fish fertilizer), the water flowing in and out of the wetlands (weekly measurements of metal concentrations and volumes) and the interstitial water contained within the CWs at the end of the experiment.

3. RESULTS

3.1. Heavy metal removal from contaminated waters

The laboratory-scale constructed wetlands demonstrated a strong ability to remove heavy metals from contaminated water. Total removal efficiencies above or equal to 96%, 99%, 79% and 97% were observed for Cd, Cu, Se and Zn respectively, across the four CWs treating Pit and TMF synthetic influents (Fig. 6). Although the Pit treatment had higher metal concentrations in the influent (Table 1), there were no significant differences in the outlet contaminant concentrations between the different CWs treatments (repeated measures ANOVA with Tukey posthoc, p>0.05 for all comparisons). These consistently high metal removal efficiencies across CW treatments, regardless of synthetic influent concentrations, suggest that the short-term metal removal capacity of these laboratory-scale CWs were not reached. Further studies that include higher concentrations of contaminant inputs, larger-scale wetlands and a greater duration of treatment would be highly useful in determining the long-term metal sequestration capacity.

Although the CWs were only at a small laboratory-scale, the Cd, Cu and Zn removal efficiencies observed were similar to the efficiencies observed in other pilot or full-scale wetlands. Removal efficiencies of 94-99% for Cd (Gammons et al 2000, Yang et al 2006), 89-97% for Cu (Banks et al 1997, Gammons et al 2000, Lesage et al 2007, Contango Strategies 2014) and 87-98% for Zn (Sobolewski 1996, Banks et al 1997, Yang et al 2006, Lesage et al 2007) have been reported. Selenium treatment of mine-impacted water by CWs seems less common than transition metals treatment and Se had the lowest average removal compared with the other contaminants. However, removal efficiencies above 83 % were observed in this study. In another study examining a northern wetland planted with the same *Carex* species, an efficiency of 26% was reported for Se removal (Contango Strategies

2014). This low efficiency was attributed to the elevated concentrations of nitrate, which competes over Se as an electron-acceptor.

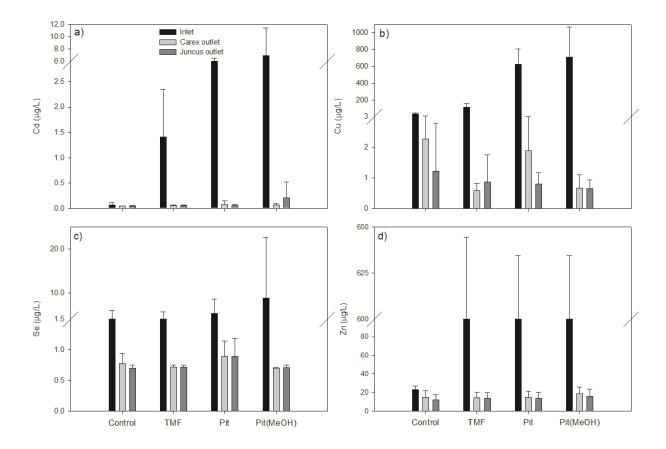
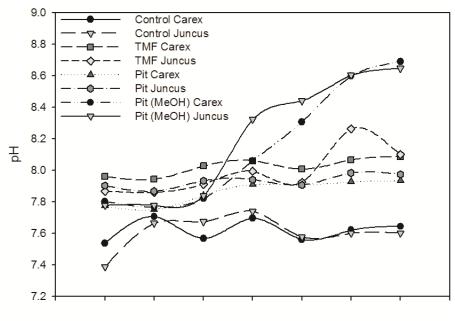


Figure 6 Cd (a), Cu (b), Se (c) and Zn (d) concentrations in CWs with C. aquatilis (Carex) and *J. balticus* (Juncus) fed with Control, TMF, Pit or Pit(MeOH) waters. Bars represent means with standard error. There were no significant differences in the outlet concentrations for any of the contaminants between the wetland treatments (repeated measures ANOVA with Tukey posthoc (p>0.05 for all comparisons). Note the broken Y-axis.

Over the trial a significant increase in pH in the TMF, Pit and Pit(MeOH) treatments was detected compared to the Control treatment (ANOVA with Tukey posthoc, p<0.05 for all comparisons) (Fig. 7). Starting at week 7 significant increases in pH were observed for the Pit(MeOH) treatment compared to all other treatments. In addition, higher consumption of SO₄ was observed for the Pit(MeOH) treatment where a carbon source (i.e.1% MeOH) was being added to the CWs. Both CWs with a Pit(MeOH) treatment had higher consumption of SO₄ compared with the Pit treatments starting at week 6 (Fig. 8). Although, the Pit(MeOH) with *J. balticus* was not significantly higher than the Pit treatment with *J. balticus*, both the Pit(MeOH) treatments were significantly higher than the Pit treatment with *C. aquatilis* (ANOVA with Tukey posthoc, p=0.05 for Carex and p=0.02 for Juncus). An increase in


reducing conditions in the CW substrate of the Pit(MeOH) treatment was observed, with an average Oxygen Reducing Potential (ORP) of -341.9 mV, compared to an average of -109.4 mV when no MeOH was added (i.e. Pit). Black deposits on the wetland surface, characteristic of sulfide precipitates, and odiferous evidence of H₂S from the Pit(MeOH) CWs indicated a strong reducing environment (Fig. 9). Low ORP, increased SO₄ consumption and black deposits on the wetland surface for the Pit(MeOH) treatment likely indicate that methanol addition to the CWs was stimulating microbial-induced sulfate reduction (Eq. 1) and subsequent metal sulfide salts precipitation (Eq. 2). Reduction of one mol of sulfate leads to the production of 3 moles of bicarbonate (HCO₃⁻), which likely explains the increase in pH observed in Fig. 7 as bicarbonate consumes hydrogen ions (Eq. 3).

(Eq. 1)
$$4 CH_3 OH + 3 SO_4^{2-} \xrightarrow{\text{microbial}} 3 HCO_3^{-} + 3HS^{-} + 5 H_2 O + CO_2$$

(Eq. 2)
$$HS^- + M^{2+} \leftrightarrow MS(s) + H^+$$

(Eq. 3)
$$HCO_3^- + H^+ \leftrightarrow H_2O + CO_2$$

In natural wetlands organic matter decomposition typically decreases the ambient redox potential. Organic carbon acts as an electron donor to microorganisms, such as sulfate-reducing bacteria, which reduce sulfate (SO₄) releasing sulfide (S²) (Sobolewski 2010). Sulfide is highly reactive and forms insoluble metal salts, such as CdS, CuS and ZnS. To offset the reduction in organic matter decomposition often encountered in northern wetlands and bioreactors, addition of liquid carbon may be advantageous (Tsukamoto et al 2004, Sobolewski 2010, Alexco 2012, Gould et al 2012). The addition of liquid methanol at 1% (v/v) in the Pit(MeOH) treatment was intended to assess the impact of additional carbon sources on the substrate conditions and subsequently on the metal uptake by northern wetland plant species. It appears that the addition of liquid methanol did impact the substrate conditions and led to greater reducing conditions, although significantly higher heavy metal removal efficiency was not observed (Fig. 6). Therefore, the presence of electron donors in the substrate was likely not a limiting factor in the Pit CWs that were not fed with methanol. In addition, the Pit(MeOH) CWs may have produced HS⁻ in excess accounting for the odor associated with this treatment.

Monitoring (week)

Figure 7 pH of outlet waters for each CW treatment monitored from week 4 to week 10 of the laboratory-scale trial. At week 7 significant increases in pH were observed for the Pit(MeOH) treatment compared to all other treatments. Similarly, both the TMF and Pit treatment had significant increases in pH compared to the control (ANOVA with TukeyHSD, p<0.05 for all comparisons).

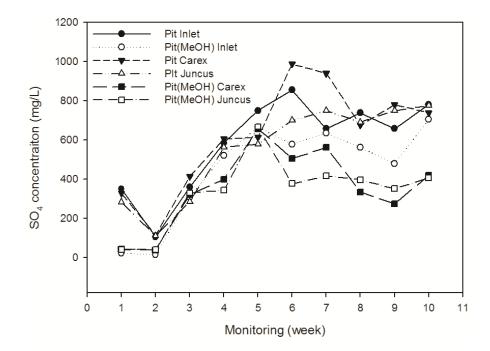


Figure 8 Sulfate concentration in the inlet and outlet waters of the Pit and Pit(MeOH) CWs with *C. aquatilis* (Carex) and *J. Balticus* (Juncus) monitored over the 10 week trial. Significantly higher sulfate consumption (i.e. Inlet-Outlet for each CW) for both Pit(MeOH) CWs compared with the Carex Pit treatment were detected (ANOVA with Tukey posthoc, p=0.05 for Carex and p=0.02 for Juncus).

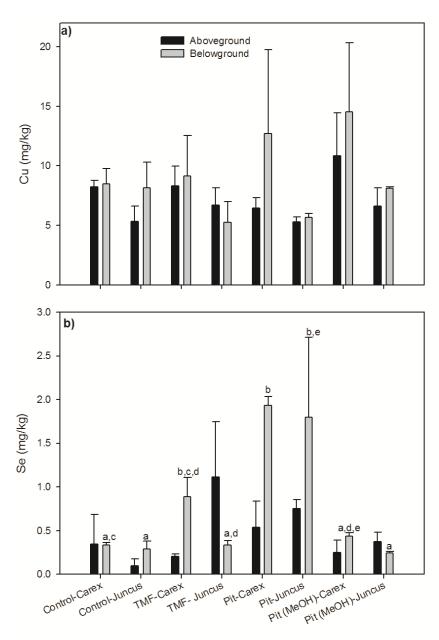
Figure 9 Black deposits on the wetland surface, characteristic of sulfide precipitates found only in the Pit(MeOH) CW treatment. In addition, an odiferous evidence of H_2S from the Pit(MeOH) was present.

To better understand the mechanisms by which metal sequestration occurs in northern CWs further studies are required. In particular, characterization of metal endpoints, examination of the relative importance of sorption versus metal precipitation and characterization of the microbial community and its' activity are needed. Understanding the metabolic activities of SRB and the entire scope of the microbial communities present in wetlands at permanently low temperatures is crucial (Robador et al 2009). More importantly, studies are needed to determine if a relationship can be established between summer and winter metal removal rates and rates of sulfate reduction, carbon consumption, metal precipitation and sorption (Gammons et. al. 2000). Such seasonally-adjusted rates will support the development of seasonally-adjusted treatment performance and design criteria for northern CWs that function year-round.

Metal uptake by plants is thought to depend on the geochemistry in the substrate and is affected by the speciation and availability of the metals. At the end of 10 weeks of treatment in our laboratory-scale study shoots of both *C. aquatilis* and *J. balticus* were yellowed and dead in the Pit(MeOH) treatment. Sulfide is known as a strong phytotoxcin to plants by causing basic disturbance to cell metabolism and energy transfer, which can hamper plant nutrient uptake (Lamers et al 2013). Death of plants within the Pit(MeOH) treatment and the strong H₂S odour may indicate that the concentration of organic carbon used was too high. In addition, other sources of carbon may be more appropriate for use in northern CWs with northern plant species. Glucose, lactate/acetate, ethanol, methanol, ethylene glycol are all carbon sources that have been used to supplement northern bioreactors or CWs (Ness et al. 2014). Further studies are needed to examine the

influence of sources and concentrations of carbon in northern CWs and how these may influence metal sequestration in both wetland substrates and plants.

3.2. Establishment, growth and metal uptake of northern wetland plants


There were no significant differences in metal removal efficiency or pH between CW treatments containing either *C. aquatalis* or *J. balticus*. Nor were there significant differences in the shoot and root length or in the above and belowground biomass across our different CW treatments for either of the northern plant species (Table 2; ANOVA with TukeyHSD posthoc, p>0.05 for all comparisons). While growth of belowground biomass was more difficult to quantify for the transplants, aboveground biomass was removed for both species prior to initiating treatment with contaminated synthetic influent; therefore, strong growth within 10 weeks with stems as long as 74 cm and 50 cm for *C. aquatalis* and *J. balticus*, respectively, was observed. With the exception of mortality of both species in the Pit(MeOH) treatment, discussed above, the establishment and growth of both plant species did not appear to be negatively impacted by the addition of contaminants into the CWs. Our study suggests that both of these species may be good candidates for northern CWs due to their vigorous growth, high tolerance to contaminants and limited uptake of Cu and Se.

Although no treatment effects on establishment were observed, C. aquatalis had a 53% survival rate and J. balticus had only a 38% survival rate following transplanting. The results suggest that if using locally transplanted materials high numbers of replicate plants may be needed to account for transplant related mortality. Although transplantation of plant materials is advantageous since plants are adapted to the local conditions (Galbrand et al. 2008), much higher rates of plant propagation success can be achieved by purchasing plugs from commercial native plant nurseries. However, plant materials for growing plugs should ultimately be sourced from as close as possible to the site of the CW. Further determination of species for northern CWs requires an evaluation of a much larger suite of locally available plants. To ensure effective naturalization of the vegetation community to be established in a CW, community modeling based on surveying of plant communities inhabiting similar local natural wetlands, including vegetation composition, structure and abundance should be conducted (Daigle and Havinga 1996, Hoag 2003). Based on the following criteria, species can be further screened for suitability in CWs: (a) phytoremediation potential (especially metal uptake), (b) sedimentation and erosion control, (c) habitat function, (d) public deterrent potential and (e) rate of plant establishment, tolerances and maintenance requirements (Galbrand et al. 2008).

Table 2 Average and standard deviation of root and shoot length and biomass (dry weight) of Carex aquatilis (Carex) and Juncus balticus (Juncus) after 10 weeks of growth in constructed wetlands (CWs) treated with either Control, Pit, TMF and Pit(MeOH) waters. There were no significant differences in root and shoot length or biomass between the CW treatments for either species (ANOVA, p>0.05 for all comparisons).

Plant species	CW Treatment	Root length (cm)	Shoot length (cm)	Root biomass (g)	Shoot biomass (g)
Carex	Control	20 ± 8.9	35 ± 21	0.38 ± 0.23	0.76 ± 0.47
	TMF	24 ± 21	35 ± 22	0.50 ± 0.23	9.2 ± 23
	Pit	25 ± 20	24 ± 23	0.42 ± 0.27	1.4 ± 1.2
	Pit(MeOH)	21 ± 9.1	28 ± 18	0.49 ± 0.23	0.91 ± 0.31
Juncus	Control	11± 10	25 ± 24	0.29 ± 0.31	0.30 ± 0.19
	TMF	11 ± 7.1	15 ± 12	0.27 ± 0.21	0.20 ± 0.14
	Pit	10 ± 6.1	21± 15	0.25 ± 0.15	0.21± 0.07
	Pit(MeOH)	7.2 ± 2.8	16 ± 8.8	0.30 ± 0.21	0.23 ± 0.09

No significant uptake of Cu or Se into the aboveground biomass by C. aquatilis or J. balticus was observed in this study. Furthermore, there was no significant difference in above or belowground Cu content in either plant species across the different CWs treatments (Fig. 10; ANOVA, p=0.51). Although in most treatments Cu content was observed to be slightly higher in the belowground biomass compared to the aboveground biomass this was not significant, suggesting an almost equal distribution of Cu throughout the biomass of C. aquatilis and J. balticus. Analysis of Cu content in C. aquatilis and J. balticus shoots taken directly from the natural wetland collection site found concentrations of 7.07 ± 2.79 and $7.14 \pm 2.71 \text{ mg/kg}$ respectively. Despite the differences in the root oxygen exchange between these two species (C. aquatilis 6.7 μ mol O₂ loss/g dry root/day vs J. balticus 9.9 μ mol O₂ loss/g dry root/day (Taylor 2009)) there were no differences in their uptake of Cu within the CWs. Contango Strategies (2014) reported similar Cu contents (4 to 20 mg Cu/kg) in C. aquatilis growing in a natural wetland area where Cu-loaded seepages are known to occur within the Minto Cu-Au mine area in the Yukon Territory. Even though small-scale experiments have been shown to overestimate metal plant uptake capability (Conesa et al 2007), both the results from this study and those observed from the natural wetland located at Minto mine (Contango Strategies 2014) suggest a low tendency for Cu uptake in these wetland plants. Other studies have found Cu uptake in Carex spp. For example in a CW treating acid mine drainage in Sweden, Carex rostrata had Cu concentrations of $84 \pm 9 \text{ mg/kg}$ in belowground biomass and $12 \pm 1.0 \text{ mg/kg}$ in aboveground biomass, which exceeds the 3 +1 mg/kg and 1.3 +0.3 mg/kg found in the control plants respectively (Nyquist and Greger 2009). Similarly elevated levels of Cu were found in the biomass of C. rostrata grown on submerged tailings in northern Sweden (22.6 mg/kg) compared to untreated plants (4-15 mg/kg), but in both cases the aboveground biomass was well below levels that were deemed tolerable for animals (25-800 mg/kg in air dried forage) (Stoltz and Greger 2002).

Wetland Treatment

Figure 10 Copper and Selenium content in *C. aquatilis* (Carex) and *J. balticus* (Juncus) in constructed laboratory-scale wetlands after 10 weeks of operation with tap water (Control), TMF, Pit or Pit (MeOH) synthetic waters. There was no significant difference in Cu content of above or belowground biomass across the treatments for either northern plant species (ANOVA, p=0.51). We detected significantly higher Se in belowground biomass in the Pit treatment compared with the control and pit (MeOH) treatments for both Carex and Juncus (ANOVA, p<0.05 for all comparisons). Bar

represent means with standard error. Different letters indicate significantly different means.

Se uptake into the aboveground biomass had a similar trend as Cu with no significant differences across the CWs treatments for either species (ANOVA, p=0.12). Analysis of Se content in C. aquatilis and J. balticus shoots taken directly from the natural wetland collection site had concentrations of 0.25 ± 0.01 and 0.29 ± 0.14 mg/kg respectively. Very few studies have examined Se uptake in CWs, however, the belowground systems of Schoenoplectus californicus and Typha angustifolia were observed to sorb and bioconcentrate Se in a pilot constructed wetland for flue gas desulfurization wastewater treatment (Sundberg-Jones and Hassan 2007). Sorption on roots accounted for 4.4 +2.7 mg/kg for S. californicus and 0.5 +0.4 mg/kg for T. angustifolia, however when both adsorption and plant tissue were considered Se concentrations were as high as 4224 +2843 mg/kg for S. californicus and 170 +109 mg/kg for T. angustifolia. In a CW vegetated mainly with Scirpus robustus, Polypogon monspeliensis and Typha latifolia treating oil-refinery effluent approximately 90% of the Se entering the CW was removed (Hansen et al 1998, de Sousa et al 1999), however these wetland plants accumulated Se in their tissues at concentrations that were at least 3 orders of magnitude above those in the effluent (deSousa et al 1999). It should be noted that the concentration of Se in both of these systems far exceeded the highest Se concentration the laboratory-scale CWs (4.5 μ g/L) with concentrations of 8.5 mg/L and 1.6 mg/L respectively.

Water-saturated soil conditions and the resulting low ORP appear to limit the Se concentration in *Carex* spp., for example under saturated soil conditions the average Se concentration in *Carex* spp. was found to be 17.7 μ g/L ±11.0 versus 43.4 μ g/L ± 15.9 in normal alpine soils (Michner et al 2007). The most highly oxidized species of Se is selenate (SeO4⁻), which is water-soluble and readily assimilated by plants, and is the form commonly found in alkaline soil where cases of Se toxicity occur (Lakin 1972, van Dorst and Peterson 1984, Michner et al 2007). Since reduced forms of Se are less available it is the abundance of the various species of Se, rather than total concentration that governs availability. The overall low levels of Se uptake observed in both *C. aquatilis* and *J. balticus* therefore, may in part be related to the water-saturated and low ORP conditions typical of wetlands.

Both northern plant species had higher Se content in the Pit treatment compared with both of their respective Control and Pit(MeOH) treatments (ANOVA with TukeyHSD posthoc, *C. aquatilis*, p <0.01 and 0.03; *J. balticus*, p<0.01 for both comparisons; Fig 10). It is not surprising that the only uptake observed in this study occurred in the belowground biomass. Many other studies have observed that the concentrations of heavy metals in various parts of macrophytes growing in CWs and natural wetlands, generally decrease in the order of roots >rhizomes > leaves > stems (Vymazal and Březinová 2015). Higher belowground Se in the Pit treatment corresponds with the higher level of contaminants in the synthetic influent (Table 1). However, in the Pit(MeOH) treatment we did not see a similar increase in uptake of Se into the belowground biomass despite the same levels of Se being introduced to the system. In the Pit(MeOH) treatment we observed a 100% mortality rate of both species by week 10, which, as discussed above, is likely due to the phytotoxicity of sulphide. Progressive death of the belowground system would reduce Se

uptake. Alternatively metal precipitation associated with increased SRB activity in the Pit(MeOH) CWs may have reduced the bioavailability of Se to *C. aquatilis* and *J. balticus*.

Hyperaccumulators are defined as plants that complete their life cycle with foliar metal concentrations exceeding (mg/kg dry weight, DW) Cd > 100, Ni and Cu > 1000, and Zn and Mn > 10,000 (Zavoda et al 2001, Marchand et al 2010). However, to date, no emergent wetland plants have been identified as hyperaccumulators. As our results confirm, metal removal through uptake by macrophytes in wetlands is relatively minor compared to other processes. Although the concentrations of heavy metals in plants growing in CWs vary considerably between species and systems, the concentrations are generally within the range commonly found in natural stands (Vymazal and Březinová 2015). The importance of macrophytes in these systems is to provide organic matter needed to perpetuate the biogeochemical processes in the substrate through die-back, and organic compounds via exudation from the roots (Jenssen et al 1993, Marchand et al 2010). Although investigating potential uptake of contaminants in a greater number of northern plant species, both at higher influent concentrations and over longer time periods is advisable, examination of other functions that wetland plants provide may be more informative for northern CW For example, higher removal efficiency has been observed for Zn and Cu when design. monocots rather than dicots are used. Since uptake in plants is not an important factor in metal removal in wetlands, differences between monocots and dicots with respect to metal acquisition cannot account for the differences in removal (Marchand et al 2010). Differences in rooting morphology and exudation of organic compounds may be the cause of this variation. Monocots have adventitious rooting systems with a greater surface area and produce phytosiderophores that chelate metals such as ferric iron due to their amine and carboxyl groups (Kidd et al 2009), whereas dicots have vertical tap roots and no phytosiderophore production (Marchand et al 2010). Further examination of the functional characteristics of northern wetland plant species in relation to long-term metal sequestration would be highly valuable. In addition, heavy metal concentrations in wetland plant biomass vary considerably during the season, but do not follow the well-known pattern for nutrients (Vymazal and Březinová 2015). In cold climates maximum concentrations of nutrients, such as nitrogen and phosphorus, tend to occur early in the growing season, while the maximum standing stock for nutrients (i.e. nutrient concentrations within plants), tends to occur later in the season at the time of maximum biomass (Vymazal and Březinová 2015). However, the standing stock for heavy metals has no consistent temporal pattern and varies both between metals and between plant species (Vymazal and Kröpfelová 2008, Vymazal and Březinová 2015). Further studies examining the seasonal patterns of heavy metal concentrations in wetland plant biomass are needed to assist in predicting any potential contaminant availability to the surrounding environment.

3.3. Cu and Se distribution within the CWs

As discussed previously, high efficiencies were observed for removal of Cu (>99%) and Se (>79%) from influent waters by the wetlands (Fig. 6). Analysis of the distribution of both contaminants in the water, plants and substrate systems suggests that

both Cu and Se were primarily contained within the substrate in all the CWs as indicated by high percentile amounts (Table 3). More than 99.8% of the total load of Cu and >90.2% of the total load of Se were measured in the substrate at the end of the experiment.

Conversely, in all of the CW treatments for both Cu and Se, <0.06% of Cu and <0.11% of Se was found in plant biomass, with the exception of the TMF treatment with *C. aquatilis* (i.e. <0.2% Cu and <0.4 % Se) (Table 3). The loads in mg of metal in biomass are calculated as the metal contents (in mg/kg) times the weight of biomass (in kg). Noteworthy, although metal concentrations are generally smaller in the shoots than in the roots, the loads measured in the shoots are higher as it reflects the larger biomass produced aboveground. Nonetheless, metal uptake by *C. aquatilis* or by *J. balticus* is clearly not a major Cu or Se removal mechanism in the CWs studied. Similar observations were made for Fe uptake by Mitsh and Wise (1998) who observed <0.07 % uptake in a constructed wetland in Ohio and by August et al (2002) who measured <0.5 % uptake in a natural wetland in Colorado. In northern Sweden *Carex rostrata, Eriophorum angustifolium* and *Phragmites australis* were observed to uptake of Zn, Cu and Cd at <0.4%, 0.3% and 2.9% respectively (Nyquist and Greger 2009). In smaller-scale experiments in greenhouses, Allende et al. (2014) and Rahman et al (2011) reported that <0.11% and 1% of the total mass of As load in the wetlands was uptaken by *P. autralis* and *J. effuses* shoots respectively.

Overall, our study supports the findings of others that suggest metal removal mechanisms are most likely driven by chemical and microbial reactions occurring within the substrates (Sobolewski 1999, Sheoran and Sheoran 2006, Vymazal and Březinová 2015). In addition, we found a higher average removal efficiency for Cu (99%) than for Se (79%) and we also found a larger distribution of Cu in the substrate (>99.8%) compared with Se (90.2-98.0%). This higher removal efficiency of Cu appears to be primarily the result of metal sequestration within the wetlands substrate. With the exception of the TMF CW treatment with *C. aquatilis*, the percentage of total Se in plants was higher than for Cu in all of CW treatments. Although the percentages for both contaminants in plant biomass were still very low, the partitioning of Se into plants may be more of a concern than the partitioning of Cu into plants. Due to the lack of information on Se uptake into wetland plants and the observed trend in this study, further examination of Se uptake in plants is recommended.

Table 3 Distribution of total Copper and Selenium partitioned by water, plants and substrate for each constructed wetland (CW) treatment and plant species (*Carex aquatilis* (Carex) and *Juncus balticus* (Juncus)) after 10 weeks of treatment with synthetic contaminated waters. Values are given in mg Cu or Se and values in parentheses are percentile amounts of total mass of Cu or Se in the CWs.

Copper						
CW Treatment	TMF	Pit	Pit(MeOH)	TMF	Pit	Pit(MeOH)
	Carex	Carex	Carex	Juncus	Juncus	Juncus
Total load (mg)	318.6	306.4	604.3	257.2	503.0	604.3
Distribution						
Water	0.41 (0.13)	0.97 (0.32)	0.50 (0.08)	0.57 (0.22)	0.44 (0.09)	0.37 (0.06)
effluent	0.31 (0.10)	0.95 (0.31)	0.46 (0.08)	0.45 (0.18)	0.43 (0.08)	0.35 (0.06)
Interstitial	0.10 (0.03)	0.02 (0.01)	0.04 (0.01)	0.12 (0.05)	0.02 (0.004)	0.02 (0.003)
Plants	0.74 (0.23)	0.19 (0.06)	0.14 (0.02)	0.03 (0.01)	0.03 (0.01)	0.03 (0.01)
Shoots	0.70 (0.22)	0.14 (0.05)	0.07 (0.01)	0.01 (0.01)	0.01 (0.003)	0.01 (0.002)
Roots	0.04 (0.01)	0.04 (0.01)	0.07 (0.01)	0.02 (0.01)	0.02 (0.004)	0.02 (0.003)
Substrate	317 (99.6)	305 (99.6)	604 (99.9)	257 (99.8)	503 (99.9)	604 (99.9)

Selenium						
CW Treatment	TMF	Pit	Pit(MeOH)	TMF	Pit	Pit(MeOH)
Plant Species	Carex	Carex	Carex	Juncus	Juncus	Juncus
Total load (mg)	8.20	10.89	19.07	3.96	5.69	9.14
Distribution						
Water	0.38 (4.69)	0.47 (4.35)	0.38 (1.99)	0.38 (9.72)	0.48 (8.50)	0.38 (4.23)
effluent	0.38 (4.67)	0.47 (4.32)	0.38 (1.98)	0.38 (9.66)	0.48 (8.42)	0.38 (4.20)
Interstitial	0.002 (0.03)	0.002 (0.02)	0.003 (0.02)	0.002 (0.06)	0.004 (0.08)	0.003 (0.03)
Plants	0.03 (0.39)	0.01 (0.11)	0.005 (0.03)	0.002 (0.06)	0.004 (0.08)	0.001 (0.01)
Shoots	0.03 (0.34)	0.005 (0.05)	0.003 (0.02)	0.001 (0.03)	0.001 (0.03)	0.0004 (0.01)
Roots	0.004 (0.05)	0.006 (0.06)	0.001 (0.01)	0.001 (0.03)	0.002 (0.05)	0.0005 (0.01)
Substrate	7.78 (94.9)	10.4 (95.5)	18.7 (98.0)	3.58 (90.2)	5.20 (91.4)	8.75 (95.8)

4. SUMMARY OF KEY FINDINGS

The laboratory-scale CWs evaluated herein demonstrated a strong ability to remove contaminants from synthetically contaminated waters with average removal efficiencies above or equal to 96%, 99%, 79% and 97% for Cd, Cu, Se and Zn respectively. Even with increased contaminant concentrations in the influent waters (i.e. Pit treatment compared to TMF treatment) there was no decline in removal efficiencies suggesting that the short-term metal removal capacity of these laboratory-scale CWs was not reached. While

transplant related mortality did reduce the overall biomass accumulation in our CWs, no treatment effects on the establishment and growth of the two northern plant species *C. aquatilis* and *J. balticus* were observed. Furthermore, there was no evidence of Cu or Se uptake into the aboveground biomass of either species with increasing contaminant availability. Increased belowground uptake of Se was observed at the higher influent concentration in the Pit treatment. Overall, this study suggests that uptake of contaminants by these two northern species is very minor (i.e. <0.06% Cu and <0.11% Se, except for *C. aquatilis* in the TMF CW <0.2% Cu and <0.4 % Se) and likely does not pose a risk to the surrounding environment. This study concludes that CWs could operate as successful passive treatment solutions in a northern environment, at least during the summer months. Further studies are required to examine seasonal metal removal rates in relation to rates of sulfate reduction, carbon consumption, metal precipitation and sorption. In addition, potential contaminant uptake and the influence of functional plant characteristics on metal removal in a suite of northern plant species would further assist in the development of large-scale long-term northern CWs.

5. RECOMMENDATIONS FOR FUTURE WORK

- Further studies that include higher concentrations of contaminant inputs, largerscale wetlands and a greater duration of treatment would be highly useful in determining the long-term metal sequestration capacity.
- To better understand the mechanisms by which metal sequestration occurs in northern CWs further studies are required. In particular, characterization of metal endpoints, speciation of the sequestered metals and characterization of the microbial community and its' activity are needed.
- Understanding the metabolic activities of SRB and the entire scope of the microbial communities present in wetlands at permanently low temperatures is crucial. Examination of the microbial community in natural wetlands, particularly those receiving contaminants would be highly informative.
- Studies are needed to determine if a relationship can be established between summer and winter metal removal rates and rates of sulfate reduction, carbon consumption, metal precipitation and sorption. Such seasonally-adjusted rates will support the development of seasonally-adjusted treatment performance and design criteria for northern CWs that function year-round.
- Further studies are needed to examine the influence of sources and concentrations of carbon in northern CWs and how these may influence metal sequestration in both wetland substrates and plants.
- Determination of species for northern CWs requires an evaluation of a much larger suite of locally available plants. To ensure effective naturalization of the vegetation

community to be established in a CW, community modeling based on surveying of plant communities inhabiting similar local natural wetlands is needed.

- Local naturally occurring wetland species should also be screened for their suitability for inclusion in CWs based upon, phytoremediation potential, sedimentation and erosion control, habitat function and rate of plant establishment, tolerance and maintenance requirements.
- Due to the lack of information on Se sequestration in CWs and Se uptake in plants, as well as, the observed uptake in the belowground systems of *Carex aquatilis* and *Juncus balticus*, special attention should be given to future studies focusing on Se.
- In addition to investigating potential uptake of contaminants in a greater number of northern plant species, both at higher influent concentrations and over longer time periods, examination of other functions that wetland plants provide may be more informative for northern CW design.
- Since contaminant concentrations within the biomass of wetland plants are known to be inconsistent both between metals and between species, further studies examining the seasonal patterns of heavy metal concentrations in wetland plant biomass are needed to assist in predicting any potential contaminant availability to the surrounding environment.

6. REFERENCES

- Alexco, 2012. Galkeno 900 sulphate-reducing bioreactor 2008-2011 operations: Final Report. Prepared for Elsa reclamation and Development Corporation.
- Allende, K.L., McCarthy, D.T., Fletcher, T.D., 2014. The influence of media type on removal of arsenic, iron and boron from acidic wasterwater in horizontal flow wetland microcosms planted with Phragmites australis. Chem. Eng. J. 246, 217-228.
- Arroyo, P., Ansolab, G., Sáenz de Miera, L.E., 2013. Effects of substrate, vegetation and flow on arsenic and zinc removal efficiency and microbial diversity in constructed wetlands, Ecol. Eng. 51, 95–103.
- August, E.E., McKnight, D.M., Hrncir, D.C., Garhart, K.S., 2002. Seasonal Variability of Metals Transport through a Wetland Impacted by Mine Drainage in the Rocky Mountains. Environ, Sci. Tech. 36, 3779-3786.
- Baldwin, S.A., Hodaly, H., 2003. Selenium uptake by a coal mine wetland sediment. Wat. Qual. Res. J. Can. 38, 483-497.
- Banks, D., Younger, P.L., Arnesen, R.T., Iversen, E.R., Banks, S.B., 1997. Mine water chemistry: the good, the bad & the ugly. Environ. Geol. 32, 157-174.

- Bathia, M., Goyal, D., 2014. Analyzing Remediation Potential of Wastewater Through Wetland Plants: A Review. Environ. Prog. Sustain.e En. 33, 9-27.
- Batty, L.C., Younger, P.L., 2004. Growth of Phragmites australis (Cav.) Trin ex. Steudel in mine water treatment wetlands: effects of metal and nutrient uptake. Environ. Poll. 132, 85-93.
- Conesa, H.M., Maria-Cervantes, A., Alvarez-Rogel, J., Gonzalez-Alcaraz, M.N., 2011. Influence of soil properties on trace element availability and plant accumulation in a Mediterranean salt marsh polluted by mining wastes: Implications for phytomanagement. Sci. Total Environ. 409, 4470–4479.
- Conesa, H.M., Robinson, B.H., Schulin, R., Nowack, B., 2007. Growth of Lygeum spartum in acid mine tailings: response of plants developed from seedlings, rhizomes and at field conditions. Environ. Poll. 145, 700–7.
- Contango Strategies, 2014. Minto Mine Constructed Wetland Treatment Research Program 2013 Progress Update. Public report available in YESAB registry under document number 2013-0100-255-1, March, 2014 (14p.).
- Daigle, J.M., Havinga, D.. 1996. Site Level Restoration Planning and Implementation. In: Restoring Nature's Place: A Guide to Naturalizing Ontario's Parks and Greenspace.
 Daigle, J.M. and D. Havinga (Eds.). Ontario Parks Association, Toronto, Ontario, pp: 61-92.
- Deng, H., Ye, Z.H., Wong, M.H., 2004. Accumulation of Pb, zinc, Cu and Cd by 12 wetland plant species thriving in metal-contaminated sites in China. Environ. Poll. 132, 29-40.
- de Souza, M.P., Huang, C.P.A., Chee, N., Terry, N., 1999. Rhizosphere bacteria enhance the accumulation of selenium and mercury in wetland plants. Planta 209, 259-263.
- Eger, P., Kairies Beatty, C.L., 2013. Constructed Wetland Treatment Systems for mine drainage – Can they really provide green and sustainable solutions? In: Brown A, Figueroa L, Wolkersdorder C, editors. IMWA 2013. Proceedings of the International Mine Water Association Annual Conference. Golden (CO): 545-550.
- Galbrand, C.C., Snow, A.M., Ghaly, A.E., Coté, R., 2008. Establishment and Evaluation of the Vegetative Community in A Surface Flow Constructed Wetland Treating Industrial Park Contaminants. Am. J. Agr. Biol. Sci. 3, 417-432.
- Gammons, C.H., Drury, W.J., Li, Y., 2000. Seasonal Influences on Heavy Metal Attenuation in an Anaerobic Treatment Wetland, Butte, Montana. In: Society for Mining Metallurgy, editors. 2000 SME. Proceedings of the Fifth International Conference On Acid Rock Drainage, Denver, Littleton (CO): 21-24.
- Gould, W.D., Cameron, R., Morin, L., Bedard, P., Lortie, L., 2012. Effect of lactate/acetate and glucose amendments on low temperature performance of anaerobic

bioreactors treating simulated mine drainage. In: Proceedings of the 9th International Conference on Acid Rock Drainage. Ottawa, Canada. May, 2012.

- Guittonny-Philippe, A., Masotti, V., Höhener, P., Boudenne, J.L., Viglione, J., Laffont-Schwob, I., 2014. Constructed wetlands to reduce metal pollution from industrial catchments in aquatic Mediterranean ecosystems: A review to overcome obstacles and suggest potential solutions, Environ. Int. 64, 1–16.
- Hansen, D., Duda, P., Zayed, A.M., Terry, N., 1998. Selenium removal by constructed wetlands: role of biological volatilization. Environ. Sci. Tech. 32, 591-597.
- Hoag, C.J., 2003. Harvesting, propagation and planting wetland plants. Technical Note. USDA- Natural Resources and Conservation Services, Boise, Idaho. TN Plant Materials No. 13.
- Jenssen, P.D., Maehlum, T., Krogstad, T., 1993. Potential use of constructed wetlands for waste-water treatment in northern environments. Wat. Sci. Tech. 28, 149-157.
- Kadlec, R., Knight, R., 1996. Treatment Wetlands. Boca Raton: Lewis Publishers.
- Kadlec, R.H., Reddy, K.R., 2001. Temperature effects in treatment wetlands. Water Environ. Res. 73, 543-556.
- Kadlec, R., Wallace, S., 2008. Treatment Wetlands, Second Edition, Boca Raton: CRC Press.
- Kidd, P., Barcelo, J., Pilar Bernal, M., Navari-Izzo, F., Poschenrieder, C., Shilev, S., Clemente, R., Monterroso, C., 2009. Trace element behaviour at the root-soil interface: implications in phytoremediation. Environ. Exp. Bot. 67, 243-259.
- Lamers, L.P.M., Govers, L.L., Janssen, C.J.M., Geurts, J.J.M., Van der Welle, M.E.W., Van Katwijk, M.M., Van der Heide, T., Roelofs, J.G.M., Smolders, A.J.P., 2013. Sulfide as a soil phytotoxin-a review. Front. Plant Sci. 4, 268, doi: 10.3389/fpls.2013.00268
- Lakin, H.W., 1972. Selenium accumulation in soils and its absorption by plants and animals. Geo. Soc. Am. Bull. 83, 181–190.
- Lesage, E., Rousseau, D.P.L., Meers, E., Tack, F.M.G., DePauw, N., 2007. Accumulation of metals in a horizontal subsurface flow constructed wetland treating domestic wastewater in Flanders, Belgium. Sci. Total Environ. 380, 102–115.
- Maine, M.A., Sune, N., Hadad, H., Sanchez, G., Bonetto, C., 2006. Nutrient and metal removal in a constructed wetland for wastewater treatment from a metallurgic industry. Ecol. Eng. 26, 341-347.
- Marchand, L., Mench, M., Jacob, D.L., Otte, M.L., 2010. Metal and metalloid removal in constructed wetlands, with emphasis on the importance of plants and standardized measurements: A review. Environ. Poll. 158, 3447-3461.

- Michner, B.J., Mionczynski, J., Hnilicka, P.A., 2007. Soil redox chemistry limitation of selenium concentration in Carex species sedges. Soil Sci. 172, 733-739.
- Mitsch, W.J., Wise, K.M., 1998. Water quality, fate of metals, and predictive model validation of a constructed wetland treating acid mine drainage. Wat. Res. 32, 1888-1900.
- Ness, I., Janin, A., Stewart, K., 2014. Passive Treatment of Mine Impacted Water In Cold Climates: A review. Yukon Research Centre, Yukon College.
- Nyquist, J., Greger, M., 2009. A field study of constructed wetlands for preventing and treating acid mine drainage. Ecol. Eng. 35, 630–642.
- Rahman, K.Z., Wiessner, A., Kuschk, P., Van Afferden, M., Mattusch, J., Arno Müllera, R.,2011. Fate and distribution of arsenic in laboratory-scale subsurface horizontalflow constructed wetlands treating an artificial wastewater. Ecol. Eng. 37, 1214– 1224.
- Robador, A., Bruchert, V. Jorgensen, B.B., 2009. The impact of temperature change on the activity and community composition of sulfate-reducing bacteria in arctic versus temperate marine sediments. Environ. Microbiol. 11, 1692-1703.
- Sheoran, A.S., 2006. Performance of three aquatic plant species in bench-scale acid mine drainage wetland test cells. Mine Wat. Environ. 25, 23–36.
- Sheoran, A.S., Sheoran, V., 2006. Heavy metal removal mechanism of acid mine drainage in wetlands: A critical review. Min. Eng. 19, 105–116.
- Sobolewski, A., 1996. Development of a wetland treatment system at United Keno Hill Mines, Elsa, Yukon Territory. In: British Columbia Technical and Research Committee on Reclamation, British Columbia: Energy and Minerals Division, editors. Proceedings of the 20th Annual British Columbia Mine Reclamation Symposium. Kamloops (BC):64-73.
- Sobolewski, A., 1999. A review of processes responsible for metal removal in wetlands treating contaminated mine drainage. Intern. J. Phyto. 1, 19-51.
- Sobolewski, A., 2010. Benefits of using liquid carbon sources for passive treatment systems. In: Wolkersdorfer C, editor. Proceedings of the International Mine Water Association symposium. Sydney (NS):279-282.
- Stoltz, E., Greger, M., 2002. Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on submerged mine tailings. Environ. Exp. Bot. 47, 271–280.
- Sundberg-Jones, S.E., Hassan, S.M., 2007. Macrophyte sorption and bioconcentration of elements in a pilot constructed wetland for flue gas desulfurization wastewater treatment. Wat. Air Soil Poll. 183, 187–200.

- Taylor, C.R., 2009. Selecting plant species to optimize wastewater treatment in constructed wetlands. M.Sc. thesis. Montana State University, Bozeman, Montana.
- Taylor, G.J., Crowder, A.A., 1983. Uptake and accumulation of heavy metals by Typha latifolia in wetlands of the Sudbury, Ontario region. Can. J. Bot. 61, 63-73.
- Tsukamoto, T.K., Killion, H.A., Miller, G.C., 2004. Column experiments for microbiological treatment of acid mine drainage: low-temperature, low-pH and matrix investigations. Wat. Res. 38, 1405–1418.
- van Dorst, S. H., Peterson., P.J., 1984. Selenium speciation in the soil solution and its relevance to plant uptake. J. Sci. Food and Agri. 35, 601–605.
- Vymazal, J., Březinová, T., 2015. Heavy metals in plants in constructed and natural wetlands: concentration, accumulation and seasonality. Wat. Sci. Tech. 71.2, 268-276.
- Vymazal, J., Kröpfelová, L., 2008. Wastewater Treatment in Constructed Wetlands with Horizontal Subsurface Flow. Springer, Dordrecht, The Netherlands.
- Yang, B., Lan, C.Y., Yang, C.S., Liao, W.B., Chang, H., Shu, W.S., 2006. Long-term efficiency and stability of wetlands for treating wastewater of a lead/zinc mine and the concurrent ecosystem development. Environ. Poll. 143, 499-512.
- Zarcinas, B.A., Cartwright, B., Spouncer, L.R., 1987. Nitric acid digestion and multi-element analysis of plant material by inductively coupled plasma spectrometry. Com. Soil Sci. Plant Anal. 18, 131-146.
- Zavoda, J., Cutright, T., Szpak, J., Fallon, E.. 2001. Uptake, selectivity, and inhibition of hydroponic treatment of contaminants. J. Environ. Eng. 127, 502-508.

APPENDIX 1 – IN-HOUSE METAL ANALYSIS QC REPORT

YRC AA QC Report

Casino Wetlands - Influent, Effluent, Substrates and Plants

Conditions	GF AAS	Standards source	SCP	
Element	Se 196.03	QC Source	Perkin Elmer Mixed Std	
Date	08/08/2014	QC Frequency	every 10 samples	
Operator	HM	QC Limits	Low level: ±20%, High level: ±	10%
Calibration equation	nonlinear through zero	Correlation coefficient	0.9998	
Detection Limit	0.68			
Sample ID	Absorbance (Corr)	Conc (ug/L)	QC Recovery (%)	
blank	-0.001524084			
1 ppb	0.001851502			
2 ppb	0.003652053			
5 ppb	0.009825244			
10 ppb	0.019049594			
25 ppb	0.043194113			
50 ppb	0.0793924			
Blank	0.000904054			115 12
low level	0.00219665			115.13
high level WL1 Jul 8	0.081705997 0.021114221			102.71
WL2 Jul 8	0.021114221			
WL3 Jul 8	0.097203726			
WL3 Jul 8	0.047490741			
WL4 Jul 8	0.004434268			
WL5 Jul 8	0.002755716			
WL6 Jul 8	0.017093365			
Blank	0.00033602			
low level	0.002305341			120.86
high level	0.083042277	52.3727		104.75
Conditions	Flame AAS	Standards source	SCP	
Element/Wavelength	Zn 213.86	QC Source	Perkin Elmer Mixed Std	
Date	14/8/2014	QC Frequency	every 10 samples	
Operator	HM	QC Limits	Low level: ±20%, High level: ±	10%
Calibration equation	Nonlinear through zero		Mid level: ±10%	
Detection Limit	5.40	Correlation coefficient		
Sample ID	Absorbance (Corr)	Conc (ug/L)	QC Recovery (%)	
blank 10. s.k	0.000303142			
10 ppb	0.006022659			
300 ppb	0.176270286			
1000 ppb	0.51803534 0.869532822			
2000 ppb blank	-0.00056963			
low level	0.00056963			99.91
high level	0.86735619			99.91
mid level	0.528209761			101.57
Jul 28 WL11	0.002382633			101.37
50. LO WELL	5.002502055	<u> </u>		
lul 28 W/I 12	0 002510663	<5 10		
Jul 28 WL12 Aug 4 WL1	0.002510663 0.231781411			

YRC AA QC Report Casino Wetlands - Influent, Effluent, Substrates and Plants

Conditions	Flame AAS	Standards source	SCP
Element/Wavelength		QC Source	Perkin Elmer Mixed Std
Date	14/8/2014	QC Frequency	every 10 samples
Operator	HM	QC Limits	Low level: ±20%, High level: ±10%
Calibration equation	Nonlinear through zero		Mid level: ±10%
Detection Limit	5.40	Correlation coefficient	0.9999
Sample ID	Absorbance (Corr)	Conc (ug/L)	QC Recovery (%)
Aug 4 WL2	0.003522687	5.8167	
Aug 4 WL3	0.003371875	5.5675	
blank	0.000905874	1.4950	
low level	0.007121771	11.7687	117.69
high level	0.879597615	2044.6623	102.23
mid level	0.534811921	1031.1847	103.12
Aug 4 WL4	0.284752591	504.0325	
Aug 4 WL5	0.004906346	8.1040	
Aug 4 WL6	0.002582176	≤5.40	
Aug 4 WL7	0.347224255	626.2643	
Aug 4 WL8	0.003907462	6.4526	
Aug 4 WL9	0.003652403	6.0311	
Aug 4 WL10	0.012273354	20.3037	
Aug 4 WL11	0.001474971	≤5.40	
Aug 4 WL12	0.002237319	≤5.40	
blank	-0.000899909	-1.4846	
low level	0.005534711	9.1429	91.43
high level	0.898394559	2117.4138	105.87
mid level	0.5375641	1037.7343	103.77
Aug 11 WL1	0.253697425	445.1050	
Aug 11 WL2	0.003760389	6.2096	
Aug 11 WL3	0.00519786	8.5859	
Aug 11 WL4	0.285375123	505.2129	
Aug 11 WL5	0.005849777	9.6641	
Aug 11 WL6	0.004665631	7.7059	
Aug 11 WL7	0.201471013	348.5222	
Aug 11 WL8	0.006467837	10.6865	
Aug 11 WL9	0.005945815	9.8229	
Aug 11 WL10	0.015883962	26.2970	
Aug 11 WL11	0.004762752	7.8664	
Aug 11 WL12	0.004112321	6.7912	
blank	-0.000143279	-0.2364	
low level	0.006247081	10.3213	103.21
high level	0.902166953	2132.3851	106.62
mid level	0.538387825	1039.5920	103.96

Conditions	GF AAS	Standards source	SCP
Analyte	Se 196.03	QC Source	Perkin Elmer Mixed Std
Date	14/08/2014	QC Frequency	every 10 samples
Operator	HM	QC Limits	Low level: ±20%, High level: ±10%
Calibration equation	Nonlinear through zero	Correlation coefficient	0.9962
Detection Limit	0.68		
Sample ID	Absorbance (Corr)	Conc (ug/L)	QC Recovery (%)
blank 1 anh	-0.001879649		
1 ppb	0.002548482		
2 ppb	0.005625086		
5 ppb	0.013254335		
10 ppb	0.027608774		
25 ppb	0.07572147		
50 ppb	0.131108067		
Blank low level	0.000105518		
	0.003141609		
high level	0.132579196		
Jul 28 WL1 Jul 28 WL1	0.024583933		
Jul 28 WL1	0.042621681		
Jul 28 WL2	0.001888707		
Jul 28 WL3	0.001772567 0.037318965		
Jul 28 WL5	0.003071641		
Jul 28 WL6	0.004290238		
Jul 28 WL7	0.132625429		
Jul 28 WL8	0.132023423		
Jul 28 WL9	0.001228877	<u>≤</u> 0.68	
Jul 28 WL10	0.037161375	13.5408	
Blank	0.000590224		
low level	0.002801649	1.0250	
high level	0.132102696		
Jul 28 WL11	0.002795962		
Jul 28 WL11	0.024692547		
Jul 28 WL12	0.002202501		
Aug 4 WL1	0.010234333		
Aug 4 WL2	0.001857484		
Aug 4 WL3	0.002246496	0.8219	
Aug 4 WL4	0.015758616	5.7565	
Aug 4 WL5	0.002423472		
Aug 4 WL6	0.002577976		
Aug 4 WL7	0.021894301		
Aug 4 WL8	0.001954852	0.7152	
Blank	-0.000329388	-0.1205	
low level	0.002586221		
high level	0.148552387		
Aug 4 WL9	0.001178027	≤0.68	
Aug 4 WL9	0.022324406	8.1486	
-			

Conditions	GF AAS	Standards source	SCP
Analyte	Se 196.03	QC Source	Perkin Elmer Mixed Std
Date	14/08/2014	QC Frequency	every 10 samples
Operator	HM	QC Limits	Low level: ±20%, High level: ±10%
Calibration equation	Nonlinear through zero	Correlation coefficient	0.9962
Detection Limit	0.68		
Sample ID	Absorbance (Corr)	Conc (ug/L)	QC Recovery (%)
Aug 4 WL10	0.001698192	0.6214	
Aug 4 WL11	0.001390676	≤0.68	
Aug 4 WL12	0.001263633	≤0.68	
Aug 11 WL1	0.006677422	2.4418	
Aug 11 WL2	0.002159801	0.7902	
Aug 11 WL3	0.00200744	0.7345	
Aug 11 WL4	0.009793499	3.5800	
Aug 11 WL5	0.002964604	1.0846	
Aug 11 WL6	0.002785984	1.0192	
Blank	-0.000212777	-0.0779	
low level	0.002885126	1.0555	105.55
high level	0.135228944	48.7166	97.43
Aug 11 WL7	0.008058052	2.9462	
Aug 11 WL7	0.021569587	7.8738	
Aug 11 WL8	0.001082891	≤0.68	
Aug 11 WL9	0.0022478	0.8224	
Aug 11 WL10	0.001296226	≤0.68	
Aug 11 WL11	0.001736488	≤0.68	
Aug 11 WL12	0.001058766	≤0.68	
Aug 14 WL1	0.012261924	4.4810	
Aug 14 WL4	0.015243826	5.5688	
Aug 14 WL7	0.02128361	7.7697	
Aug 14 WL10	0.001653774	≤0.68	
Blank	-8.72E-05	-0.0319	
low level	0.002409657	0.8816	88.16
high level	0.135619348	48.8550	97.71
Conditions	GF AAS	Standards source	SCP
Analuta			Darkin Elmor Mixed Std

Conditions	GF AAS	Standards source	SCP
Analyte	Cd 228.80	QC Source	Perkin Elmer Mixed Std
Date	09/02/2014	QC Frequency	every 10 samples
Operator	HM	QC Limits	Low level: ±20%, High level: ±10%
Calibration equation	Nonlinear through zero	Correlation coefficient	0.9995
Detection Limit	0.05		
Sample ID	Absorbance (Corr)	Conc (ug/L)	QC Recovery (%)
blank	-0.003331556		
0.1 ppb	0.008115575		
0.2 ppb	0.015560695		
0.5 ppb	0.043761667		
1 ppb	0.086968326		
2 ppb	0.17535536		

-			
Conditions	GF AAS	Standards source	SCP
Analyte	Cd 228.80	QC Source	Perkin Elmer Mixed Std
Date	09/02/2014	QC Frequency	every 10 samples
Operator	HM	QC Limits	Low level: ±20%, High level: ±10%
Calibration equation	Nonlinear through zero	Correlation coefficient	0.9995
Detection Limit	0.05		
Sample ID	Absorbance (Corr)	Conc (ug/L)	QC Recovery (%)
5 ppb	0.423729351		
blank	-5.93E-06		
low level	0.007931778		
high level	0.4341052		
Aug 4 WL1	0.100526814		
blank	0.000557584		
low level	0.008340819	0.0998	
high level	0.45475571		
Aug 4 WL2	0.000846988		
Aug 4 WL3	0.000816887		
Aug 4 WL3	0.094463713	1.1215	
Aug 4 WL4	0.478070996		
Aug 4 WL4	0.242172088		
Aug 4 WL5	0.00266314		
Aug 4 WL6	0.001746556		
Aug 4 WL7	0.556964874		
Aug 4 WL7	0.445227303		
Aug 4 WL7	0.130533011		
Aug 4 WL8 blank	0.000771359		
low level	0.001870404 0.009936529	0.0224	
high level	0.455448797		
Aug 4 WL9	0.002286002	5.2443 ≤0.05	
Aug 4 WL9	-0.000261605	≤0.05 ≤0.05	
Aug 4 WL10 Aug 4 WL11	0.000592602	≤0.05 ≤0.05	
Aug 4 WL11 Aug 4 WL12	-2.85E-05		
Aug 11 WL1	0.128411823	1.5200	
Aug 11 WL1	0.201327626	2.3684	
Aug 11 WL2	0.002159314		
Aug 11 WL3	0.00365273	<u></u> ≤0.05	
Aug 11 WL4	0.466416337		
Aug 11 WL4	0.264933057		
Aug 11 WL5	0.0040489		
blank	-0.000703975	-0.0084	
low level	0.009319608	0.1115	
high level	0.45086362	5.1935	
Aug 11 WL6	0.001991877	≤0.05	
Aug 11 WL7	0.369772176		
Aug 11 WL8	0.003386749		
Aug 11 WL9	0.004944395	0.0592	
	0.001011000	0.0352	

Conditions	GF AAS	Standards source	SCP
Analyte	Cd 228.80	QC Source	Perkin Elmer Mixed Std
Date	09/02/2014	QC Frequency	every 10 samples
Operator	HM	QC Limits	Low level: ±20%, High level: ±10%
Calibration equation	Nonlinear through zero	Correlation coefficient	0.9995
Detection Limit	0.05		
Sample ID	Absorbance (Corr)	Conc (ug/L)	QC Recovery (%)
Aug 11 WL10	0.000175505	≤0.05	
Aug 11 WL11	0.001644273	≤0.05	
Aug 11 WL11	0.09781941	1.1610	
Aug 11 WL12	0.00070503	≤0.05	
Aug 14 WL1	0.148505422	1.7549	
Aug 14 WL4	0.504965968	5.7905	
Aug 14 WL4	0.272503422	3.1863	
blank	-0.000606952	-0.0073	
low level	0.009007601	0.1077	107.73
high level	0.467973912	5.3829	107.66
Aug 14 WL7	0.526362571	6.0252	
Aug 14 WL7	0.28186189	3.2932	
Aug 14 WL10	0.017070479	0.2040	
Aug 18 WL2	0.00429138	0.0513	
Aug 18 WL3	0.005397818	0.0646	
Aug 18 WL5	0.007108622	0.0850	
Aug 18 WL6	0.008084996	0.0967	
Aug 18 WL8	0.00798436	0.0955	
Aug 18 WL8	0.088932148	1.0563	
Aug 18 WL9	0.045987351	0.5482	
Aug 18 WL11	-0.000498076	≤0.05	
blank	6.05E-05	0.0007	
low level	0.008992254	0.1075	
high level	0.474209326	5.4518	
Aug 18 WL12	0.001384125	≤0.05	
blank	0.000138315	0.0017	
low level	0.008988161	0.1075	107.50
high level	0.452607598	5.2128	104.26

		inuent, Ennuent, Substrat	
Conditions	GF AAS	Standards source	SCP
Element/Wavelength		QC Source	Perkin Elmer Mixed Std
Date	09/04/2014	QC Frequency	every 10 samples
Operator	HM	QC Limits	Low level: ±20%, High level: ±10%
Calibration equation	Nonlinear through zero	Correlation coefficient	0.9989
Detection Limit	0.68		
Sample ID	Absorbance (Corr)	Conc (ug/L)	QC Recovery (%)
blank	-0.000924804		
1 ppb	0.002179419		
2 ppb	0.00394895		
5 ppb	0.01160137		
10 ppb	0.024136548		
25 ppb	0.061092115		
50 ppb	0.120173986		
Blank	0.000523937		
low level	0.002045318		
high level	0.128374185		102.82
Aug 4 WL1	0.010206643		
Aug 4 WL2	0.002074029	0.9342	
Aug 4 WL3	0.002297185	1.0345	
Aug 4 WL3	0.025183107	11.0900	
Aug 4 WL4	0.015273901		
Aug 4 WL5	0.002160848	0.9732	
Aug 4 WL6	0.002484341		
Aug 4 WL7	0.021431334		
Aug 4 WL8	0.001046304		
Aug 4 WL9	0.001355678		
Aug 4 WL10	0.001704024		
Blank	-5.43E-05		
low level	0.002344869	1.0559	105.59
high level	0.129725445	51.8875	103.77
Aug 4 WL11	0.00153172		
Aug 4 WL12	0.0011148		
Aug 11 WL1	0.005989162		
Aug 11 WL1	0.018588816		
Aug 11 WL2	0.001690287		
Aug 11 WL3	0.001424201		
Aug 11 WL4	0.010297334		
Aug 11 WL5	0.002933624		
Aug 11 WL6	0.001416259	≤0.68	
Aug 11 WL7	0.008869006		
Aug 11 WL8	0.001199705		
Blank	-9.18E-05		
low level	0.002641518		
high level	0.131847244		
Aug 11 WL9	0.001410542		
Aug 11 WL10	0.001213391	≤0.68	

Conditions	GF AAS	Standards source	SCP
Element/Wavelength		QC Source	Perkin Elmer Mixed Std
Date	09/04/2014	QC Frequency	every 10 samples
Operator	HM	QC Limits	Low level: ±20%, High level: ±10%
Calibration equation	Nonlinear through zero	Correlation coefficient	0.9989
Detection Limit	0.68		
Sample ID	Absorbance (Corr)	Conc (ug/L)	QC Recovery (%)
Aug 11 WL11	0.001148154	≤0.68	
Aug 11 WL11	0.022544018	9.9532	
Aug 11 WL12	0.001106	≤0.68	
Aug 14 WL1	0.011097428	4.9544	
Aug 14 WL4	0.016904722	7.5044	
Aug 14 WL7	0.020614976	9.1185	
Aug 14 WL10	0.001460851	≤0.68	
Aug 18 WL2	0.00175023	0.7886	
Aug 18 WL3	0.001007379	≤0.68	
Blank	-0.000382122	-0.1725	
low level	0.002616343	1.1778	117.78
high level	0.132284115	52.7923	105.58
Aug 18 WL5	0.001947331	0.8772	
Aug 18 WL6	0.002648805	1.1924	
Aug 18 WL8	0.000995318	≤0.68	
Aug 18 WL8	0.015114963	6.7216	
Aug 18 WL9	0.00116432	≤0.68	
Aug 18 WL11	0.001109198	≤0.68	
Aug 18 WL12	0.001164352	≤0.68	
Blank	-0.000379849	-0.1715	
low level	0.002527278	1.1378	113.78
high level	0.131890087	52.6533	105.31

Conditions	Flame AAS	Standards source	SCP
Element/Wavelength	Zn 213.86	QC Source	Perkin Elmer Mixed Std
Date	09/09/2014	QC Frequency	every 10 samples
Operator	HM	QC Limits	Low level: ±20%, High level: ±10%
Calibration equation	Nonlinear through zero		Mid level: ±10%
Detection Limit	5.40	Correlation coefficient	0.9949
Sample ID	Absorbance (Corr)	Conc (ug/L)	QC Recovery (%)
blank	0.001720502		
10 ppb	0.004214334		
300 ppb	0.168835188		
1000 ppb	0.516298064		
2000 ppb	0.866859074		
blank	-0.00166597	-3.2584	
low level	0.004391502	8.5947	85.95
high level	0.850163415	1827.0318	91.35
mid level	0.511293875	1057.2792	105.73
Aug 14 WL1	0.266204164	535.8041	

Conditions		Stendards source	
Conditions Element/Wavelength	Flame AAS Zn 213.86	Standards source QC Source	SCP Perkin Elmer Mixed Std
Date	09/09/2014	QC Frequency	every 10 samples
Operator	HM	QC Limits	Low level: ±20%, High level: ±10%
Calibration equation	Nonlinear through zero		Mid level: ±10%
Detection Limit	5.40	Correlation coefficient	
Sample ID	Absorbance (Corr)	Conc (ug/L)	QC Recovery (%)
Aug 14 WL4	0.281848194		
Aug 14 WL7	0.298955972	603.8745	
Aug 14 WL10	0.011106746	21.7527	
blank	-0.001833912	-3.5868	
low level	0.004987383	9.7615	97.62
high level	0.854423026	1837.0720	91.85
mid level	0.504719251	1042.8745	104.29
Aug 18 WL2	0.011709385	22.9362	
Aug 18 WL2	0.008678152		
Aug 18 WL3	0.007118474		
Aug 18 WL5	0.008313125	16.2766	
Aug 18 WL6	0.006633667	12.9860	
Aug 18 WL8	0.008368634		
Aug 18 WL9	0.008282143	16.2159	
Aug 18 WL11	0.013097502		
Aug 18 WL12 Aug 18 WL12	0.007449708 0.007689014	14.5848 15.0536	
blank	-0.000866621	-1.6951	
low level	0.005754929		112.65
high level	0.845057784		90.75
mid level	0.512236157	1059.3030	105.93
Aug 21 WL2	0.006700812	13.1176	
Aug 21 WL2	0.007552138	14.7854	
Aug 21 WL3	0.006661507	13.0405	
Aug 21 WL5	0.006600151	12.9203	
Aug 21 WL6	0.004914165	9.6182	
Aug 21 WL8	0.007298528	14.2885	
Aug 21 WL9	0.005816139	11.3846	
Aug 21 WL11	0.004309029	8.4332	
Aug 21 WL12	0.005664984		
Aug 21 WL12	0.00593474		
blank	-0.00235655	-4.6088	
low level	0.004453023	8.7152	
high level	0.849797607	1826.1514	91.31
mid level	0.509979993	1054.3598	105.44
Aug 21 WL1	0.277257095	558.7176	
Aug 21 WL4 Aug 21 WL7	0.277059868 0.00887566	558.3181 17.3790	
Aug 21 WL7 Aug 21 WL10	0.00887566	17.3790	
Aug 21 WL10 Aug 21 WL7	0.288240621	581.5519	
AUR ST MEL	0.288240621	201.2219	

Conditions	Flame AAS	Standards source	SCP
Element/Wavelength	Zn 213.86	QC Source	Perkin Elmer Mixed Std
Date	09/09/2014	QC Frequency	every 10 samples
Operator	HM	QC Limits	Low level: ±20%, High level: ±10%
Calibration equation	Nonlinear through zero		Mid level: ±10%
Detection Limit	5.40	Correlation coefficient	0.9949
Sample ID	Absorbance (Corr)	Conc (ug/L)	QC Recovery (%)
Aug 22 WL2	0.0076565	14.9899	
Aug 22 WL3	0.005812442	11.3774	
Aug 22 WL3	0.006441952	12.6104	
Aug 22 WL5	0.006554127	12.8302	
Aug 22 WL6	0.007323358	14.3372	
Aug 22 WL8	0.006672226	13.0615	
Aug 22 WL9	0.008364496	16.3773	
Aug 22 WL9	0.008827707	17.2850	
Aug 22 WL11	0.004772811	9.3414	
Aug 22 WL12	0.005598708	10.9588	
blank	-0.001840914	-3.6005	
low level	0.005093732	9.9698	99.70
high level	0.842711308	1809.5170	90.48
mid level	0.515087913	1065.5478	106.55
Aug 25 WL2	0.006577767	12.8765	
Aug 25 WL2	0.006211399	12.1588	
Aug 25 WL2	0.005479728	10.7257	
Aug 25 WL3	0.005279522	10.3337	
Aug 25 WL3	0.00606176	11.8657	
Aug 25 WL3	0.006033953	11.8113	
Aug 25 WL5	0.006470919	12.6672	
Aug 25 WL6	0.005656724	11.0724	
Aug 25 WL8	0.007305649	14.3025	
Aug 25 WL8	0.008143671	15.9445	
Aug 25 WL9	0.007112422		
Aug 25 WL11	0.010909316	21.3656	
Aug 25 WL12	0.003462103	6.7751	
blank	-0.00338644	-6.6222	
low level	0.00390577	7.6437	76.44

Conditions	GF AAS	Standards source	SCP
Element/Wavelength	Cu 324.75	QC Source	Perkin Elmer Mixed Std
Date	23/9/2014	QC Frequency	every 10 samples
Operator	HM	QC Limits	Low level: ±20%, High level: ±10%
Calibration equation	Nonlinear through zero	Correlation coefficient	0.9991/0.9933
Detection Limit	0.57		
Sample ID	Absorbance (Corr)	Conc (ug/L)	QC Recovery (%)
blank	0.002021639		
0.5 ppb	0.002556265		
1 ppb	0.004112648		

Conditions	GF AAS	Standards source	SCP
Element/Wavelength		QC Source	Perkin Elmer Mixed Std
Date	23/9/2014	QC Frequency	every 10 samples
Operator	HM	QC Limits	Low level: ±20%, High level: ±10%
Calibration equation		Correlation coefficient	0.9991/0.9933
Detection Limit	0.57		
Sample ID	Absorbance (Corr)	Conc (ug/L)	QC Recovery (%)
2 ppb	0.007880763		
5 ppb	0.020396179		
10 ppb	0.04147264		
25 ppb	0.105115715		
blank	-8.94E-05		
low level	0.001886435		
high level	0.104755312		
Aug 4 WL1	0.002171989		
Aug 4 WL1	0.009257615		
Aug 4 WL2	0.005566461		
Aug 4 WL3	0.004399891		
Aug 4 WL4	0.018329237	422.9581	
Aug 4 WL5	0.00415604	0.9501	
Aug 4 WL6	0.004104299	0.9383	
Aug 4 WL7	0.021546267	498.2526	
blank	-0.000133889	-0.0305	
low level	0.002033564	0.4643	92.85
high level	0.107151706	26.2683	105.07
blank	0.00115203		
0.5 ppb	0.003008864		
1 ppb	0.004143695		
2 ppb	0.007814518		
5 ppb	0.019864043		
10 ppb	0.039258411		
25 ppb	0.098492606		
Aug 4 WL8	0.008646259	1.8565	
Aug 4 WL9	0.006236636	1.3313	
Aug 4 WL10	0.079096419	20.5312	
Aug 4 WL11	0.005206185	1.1085	
Aug 4 WL11	0.012293497	2.6635	
Aug 4 WL12	0.005369748	1.1438	
Aug 11 WL1	0.004017371	85.2937	
Aug 11 WL2	0.001694562	≤0.57	
Aug 11 WL3	0.001232136	≤0.57	
Aug 11 WL4	0.020746434	459.0967	
Aug 11 WL5	0.003282011	0.6956	
blank	-0.000294205	-0.0618	
low level	0.002455856	0.5194	103.89
high level	0.104746744	29.4271	117.71

		fluent, Effluent, Substrat	
Conditions	GF AAS	Standards source	SCP
Element/Wavelength		QC Source	Perkin Elmer Mixed Std
Date	10/03/2014	QC Frequency	every 10 samples
Operator	HM	QC Limits	Low level: ±20%, High level: ±10%
Calibration equation		Correlation coefficient	0.9999/0.9999
Detection Limit	0.68		
Sample ID	Absorbance (Corr)	Conc (ug/L)	QC Recovery (%)
blank	-0.002242679		
1 ppb	0.002906817		
2 ppb	0.005975021		
5 ppb	0.013905937		
10 ppb	0.027073951		
25 ppb	0.066081708		
50 ppb	0.12768428		
Blank	0.000784481		
low level	0.003404753		
high level	0.127976085	50.1077	
Aug 21 WL1	0.005070508		
Aug 21 WL1	0.01126537		
Aug 25 WL2	0.00084686		
Aug 25 WL3	0.001112898		
Aug 21 WL4	0.00523533		
Aug 25 WL5	0.00105555		
Aug 25 WL6	0.000751423		
Aug 21 WL7	0.005685648		
Aug 25 WL8	0.000376847		
Aug 25 WL9	0.000838325		
Aug 21 WL10	0.000945175		
Blank	0.000837897		
low level	0.003041743	1.0399	
high level	0.127514001 0.000445558	49.9198 ≤0.68	
Aug 25 WL11 Aug 25 WL11	0.015604325		
Aug 25 WL11 Aug 25 WL12	0.000398654		
Aug 28 WL1	0.00577754		
Sep 1 WL2	0.001208936		
Sep 1 WL3	0.0001208930		
Aug 28 WL4	0.010520164		
Sep 1 WL5	0.001033825		
Sep 1 WLS	0.0001033823		
Aug 28 WL7	0.008052689		
Sep 1 WL8	0.000380202		
Blank	0.001455855		
low level	0.002371739		80.87
high level	0.129257385		
Sep 1 WL9	0.000214605		
Sep 1 WL9	0.007472072		
	0.007472072	2.5352	

		fluent, Effluent, Substrat	
Conditions	GF AAS	Standards source	SCP
Element/Wavelength		QC Source	Perkin Elmer Mixed Std
Date	10/03/2014	QC Frequency	every 10 samples
Operator	HM	QC Limits	Low level: ±20%, High level: ±10%
Calibration equation		Correlation coefficient	0.9999/0.9999
Detection Limit	0.68		
Sample ID	Absorbance (Corr)	Conc (ug/L)	QC Recovery (%)
Aug 28 WL10	0.000738918		
Sep 1 WL11	0.000182051	≤0.68	
Sep 1 WL12	0.000434983		
Sep 4 WL1	-5.13E-05		
Sep 8 WL2	0.0008358		
Sep 8 WL3	0.000640263	≤0.68	
Sep 4 WL4	0.005663419		
Sep 8 WL5	0.000547937		
Sep 8 WL6 Blank	0.000737062		
low level	0.001057757		
high level	0.002693087 0.12902248	0.9194 50.5333	
Sep 4 WL7	0.12902248		
Sep 4 WL7	0.011162352		
Sep 8 WL8	0.000651822	5.9208 ≤0.68	
Sep 8 WL9	-0.000284445		
Sep 4 WL10	0.000473433		
Sep 8 WL11	0.000769834		
Sep 8 WL12	0.000456853		
Sep 11 WL1	0.007582452		
Sep 15 WL2	0.001188998		
Sep 15 WL3	0.000270971	≤0.68	
Sep 11 WL4	0.014071446	4.9819	
Blank	-0.000272831	-0.0920	
low level	0.002395199	0.8168	81.68
high level	0.129990646	50.9272	101.85
Sep 15 WL5	0.004180689	1.4355	
Sep 15 WL5	0.01137816	3.9991	
Sep 15 WL6	0.000350961	≤0.68	
Sep 11 WL7	0.014340692	5.0807	
Sep 15 WL8	0.000233479	≤0.68	
Sep 15 WL9	0.000714803	≤0.68	
Sep 11 WL10	0.000744549	≤0.68	
Sep 15 WL11	0.000386659	≤0.68	
Sep 15 WL12	0.000726097	≤0.68	
Sep 18 WL1	0.009673825	3.3832	
Sep 22 WL2	0.000685108	≤0.68	
Blank	0.000371134	0.1255	
low level	0.002793687	0.9541	95.41
high level	0.129941362	50.9071	101.81

Conditions	GF AAS	Standards source	SCP
Element/Wavelength		QC Source	Perkin Elmer Mixed Std
Date	10/03/2014	QC Frequency	every 10 samples
Operator	HM	QC Limits	Low level: ±20%, High level: ±10%
Calibration equation	· · · · · · · · · · · · · · · · · · ·	Correlation coefficient	0.9999/0.9999
Detection Limit	0.68		
Sample ID	Absorbance (Corr)	Conc (ug/L)	QC Recovery (%)
Sep 22 WL3	0.00089484		
Sep 22 WL3	0.007680107		
Sep 18 WL4	0.014451862		
Sep 22 WL5	0.00063528		
Sep 22 WL6	0.000871539		
Sep 18 WL7	0.014237663	5.0429	
Sep 22 WL8	0.000214632		
Sep 22 WL9	0.000556132		
Sep 18 WL10	0.001178629		
Sep 22 WL11	0.000233898		
Sep 22 WL12	0.000945904	≤0.68	
Blank	0.001017828	0.3451	
low level	0.002396637	0.8172	81.72
high level	0.126317834		98.87
blank 1 mah	-0.002306704		
1 ppb	0.002210213		
2 ppb	0.004418832		
5 ppb	0.011242485		
10 ppb	0.023637822 0.060400348		
25 ppb 50 ppb	0.123888266		
Blank	0.000984829	0.4491	
low level	0.000984829	1.1315	113.15
high level	0.118855434	48.0203	96.04
Sep 25 WL1	0.008841176	3.9176	
Sep 25 WL1	0.016426842		
Sep 29 WL2	0.001138537		
Sep 29 WL3	0.001082364		
Sep 25 WL4	0.015460042		
Sep 29 WL5	0.000966319		
Sep 29 WL6	0.000926813		
Sep 25 WL7	0.011531595	5.0712	
Sep 29 WL8	0.000699483		
Sep 29 WL9	0.000796952		
Sep 25 WL10	0.000821831		
Blank	0.000669421		
low level	0.002028892	0.9211	92.11
high level	0.126310417		
Sep 29 WL11	0.00253344		
Sep 29 WL11	0.024791081	10.6098	
•			

GF AAS	Standards source	SCP
Se 196.03	QC Source	Perkin Elmer Mixed Std
10/03/2014	QC Frequency	every 10 samples
HM	QC Limits	Low level: ±20%, High level: ±10%
Nonlinear through zero	Correlation coefficient	0.9999/0.9999
0.68		
Absorbance (Corr)	Conc (ug/L)	QC Recovery (%)
0.001254789	≤0.68	
0.007020291	3.1285	
0.008402776	3.7283	
0.010587002	4.6677	
0.000843314	≤0.68	
0.019868712	8.5761	
0.000146174	0.0669	
0.002256379	1.0233	102.33
0.124294107	50.1555	100.31
	Se 196.03 10/03/2014 HM Nonlinear through zero 0.68 Absorbance (Corr) 0.001254789 0.007020291 0.008402776 0.010587002 0.000843314 0.019868712 0.000146174 0.002256379	Se 196.03 QC Source 10/03/2014 QC Frequency HM QC Limits Nonlinear through zero Correlation coefficient 0.68 0.001254789 0.001254789 ≤0.68 0.007020291 3.1285 0.007020291 3.1285 0.0010587002 4.6677 0.000843314 ≤0.68 0.019868712 8.5761 0.000146174 0.0669 0.002256379 1.0233

Conditions	Flame AAS	Standards source	SCP
Element/Wavelength	Zn 213.86	QC Source	Perkin Elmer Mixed Std
Date	20/10/2014	QC Frequency	every 10 samples
Operator	HM	QC Limits	Low level: ±20%, High level: ±10%
Calibration equation	Nonlinear through zero		Mid level: ±10%
Detection Limit	5.40	Correlation coefficient	0.9998/0.9999
Sample ID	Absorbance (Corr)	Conc (ug/L)	QC Recovery (%)
blank	0.420360173		
10 ppb	0.005966746		
300 ppb	0.1789273		
1000 ppb	0.528848007		
2000 ppb	0.903043039		
blank	-0.001515436	-2.5126	
low level	0.006339549	10.5236	105.24
high level	0.906217808	2026.5109	101.33
mid level	0.531644518	990.0639	99.01
Aug 28 WL1	0.328393087	578.6193	
Sep1 WL2	0.012714532	21.1258	
Sep1 WL3	0.010694989	17.7649	
Aug 28 WL4	0.361235833	641.4593	
Sep1 WL5	0.011652229	19.3577	
Sep1 WL6	0.011591494	19.2566	
Aug 28 WL7	0.284075498	495.5948	
Sep1 WL8	0.012450578	20.6865	
Sep1 WL9	0.011973891	19.8930	
Aug 28 WL10	0.018984512	31.5746	
Aug 28 WL10	0.016169278	26.8800	
blank	-0.001071608	-1.7768	
low level	0.005099276	8.4631	84.63
high level	0.900125916	2004.3207	100.22

Conditions	Flame AAS	Standards source	SCP
Element/Wavelength		QC Source	Perkin Elmer Mixed Std
Date	20/10/2014	QC Frequency	every 10 samples
Operator	HM	QC Limits	Low level: ±20%, High level: ±10%
Calibration equation	Nonlinear through zero		Mid level: ±10%
Detection Limit	5.40	Correlation coefficient	0.9998/0.9999
Sample ID	Absorbance (Corr)	Conc (ug/L)	QC Recovery (%)
mid level	0.529838529	986.2038	98.62
Sep1 WL11	0.009895092	16.4344	
Sep1 WL11	0.00834672	13.8595	
Sep1 WL12	0.007399771	12.2854	
Sep 4 WL1	0.320582801	563.8838	
Sep 8 WL2	0.009164648	15.2195	
Sep 8 WL2	0.009302224	15.4483	
Sep 8 WL2	0.009991965	16.5955	
Sep 8 WL3	0.00786674	13.0615	
Sep 4 WL4	0.335455119	592.0138	
Sep 8 WL5	0.009405436	15.6199	
Sep 8 WL6	0.008295518	13.7743	
Sep 4 WL7	0.293133727	512.4083	
Sep 8 WL8	0.011429451	18.9870	
blank	-0.000889507	-1.4750	
low level	0.005577574	9.2576	92.58
high level	0.891481966	1973.1457	98.66
mid level	0.542922104	1014.7879	101.48
Sep 8 WL9	0.012680452	21.0693	
Sep 8 WL9	0.011218303	18.6357	
Sep 4 WL10	0.014918947	24.7968	
Sep 8 WL11	0.009308917	15.4594	
Sep 8 WL12	0.007542543	12.5226	
Sep 11 WL1	0.338269899	597.3698	
Sep 15 WL2	0.01355407	22.5236	
blank	-0.001054448	-1.7484	
low level	0.005654432		
high level	0.871800262		
mid level	0.532543902	992.1868	99.22
blank	-0.002160573		
10 ppb	0.005701579		
300 ppb	0.156842622		
1000 ppb	0.486758137		
2000 ppb	0.82515406		
blank	0.001055874		
low level	0.005873037		
high level	0.821551192	1980.9958	
mid level	0.482366448		
Sep 15 WL3	0.011089602		
Sep 11 WL4	0.325598192	640.2363	

Conditions	Flame AAS	Standards source	SCP
Element/Wavelength		QC Source	Perkin Elmer Mixed Std
Date	20/10/2014	QC Frequency	every 10 samples
Operator	HM	QC Limits	Low level: ±20%, High level: ±10%
Calibration equation	Nonlinear through zero	<u> </u>	Mid level: ±10%
Detection Limit	5.40	Correlation coefficient	
Sample ID	Absorbance (Corr)	Conc (ug/L)	QC Recovery (%)
Sep 15 WL5	0.014367731		
Sep 15 WL6	0.013729625		
Sep 11 WL7	0.280834386		
Sep 15 WL8 Sep 15 WL9	0.014923794 0.013572007		
•	0.015996852		
Sep 11 WL10 Sep 15 WL11	0.010462949		
Sep 15 WL12	0.010462949		
blank	0.000525414		
low level	0.006208232		
high level	0.848258291		
mid level	0.493882267		
Sep 18 WL1	0.265214306		
Sep 22 WL2	0.010108991		
Sep 22 WL3	0.011558928		
Sep 18 WL4	0.284493218		
Sep 22 WL5	0.00820523		
Sep 22 WL6	0.009296288		
Sep 22 WL6	0.008642791	15.3950	
Sep 18 WL7	0.285457341	553.7146	
Sep 22 WL8	0.012810645	22.8460	
Sep 22 WL9	0.013977812	24.9358	
Sep 18 WL10	0.014930596	26.6427	
Sep 22 WL11	0.009584577	17.0771	
Sep 22 WL12	0.009119938	16.2472	
blank	-0.000666624	-1.1843	
low level	0.00491572	8.7470	
high level	0.847111227	2068.9553	103.45
mid level	0.493615578		
Sep 25 WL1	0.273675506		
Sep 29 WL2	0.009994445		
Sep 29 WL3	0.011831648		
Sep 25 WL4	0.319073339		
Sep 29 WL5	0.012524489		
Sep 29 WL6	0.012620316		
Sep 25 WL7	0.304686756		
Sep 29 WL8	0.015896201	28.3735	
Sep 29 WL9	0.013222954		
Sep 25 WL10	0.011789986		
Sep 29 WL11	0.011487331	20.4784	

Conditions		Standarda source	
Conditions	Flame AAS	Standards source	SCP Derkin Elmor Miyed Std
Element/Wavelength		QC Source	Perkin Elmer Mixed Std
Date	20/10/2014	QC Frequency	every 10 samples
Operator	HM Negligeographics	QC Limits	Low level: ±20%, High level: ±10%
Calibration equation Detection Limit	Nonlinear through zero 5.40	Correlation coefficient	Mid level: ±10%
Sample ID	Absorbance (Corr)		
Sep 29 WL12	0.010703869	Conc (ug/L) 19.0774	QC Recovery (%)
blank	0.000544883	0.9684	
low level	0.00607136	10.8068	
high level	0.844765802	2061.3352	
blank	-0.004187681		103.07
10 ppb	0.007499846		
300 ppb	0.172956124		
1000 ppb	0.501478551		
2000 ppb	0.855038044		
blank	0.004600027	6.2642	
low level	0.008542029	11.6807	
high level	0.855454992	1989.0195	
mid level	0.504115793	1032.4798	103.25
Oct1 WL1	0.249006146	437.9382	
Oct1 WL4	0.298150762	543.5597	
Oct1 WL4	0.309601464	568.6435	
Oct1 WL7	0.305417049	559.3826	
Oct1 WL10	0.007116039	9.7108	
Oct2 WL2	0.060719371	89.0190	
blank	-0.000304524	-0.4108	
low level	0.006046573	8.2385	82.39
high level	0.865180926	2017.2012	100.86
mid level	0.506430055	1038.4319	
Oct2 WL3	0.04570743	65.7522	
Oct2 WL3	0.039369475	56.1633	
Oct2 WL5	0.048083337	69.3705	
Oct2 WL6	0.03063359	43.2108	
Oct2 WL6	0.029321744	41.2740	
Oct2 WL8	0.101845187	156.5709	
Oct2 WL9	0.070085168	103.9868	
Oct2 WL9	0.064832934	95.5056	
Oct2 WL11	0.016377309	22.6458	
Oct2 WL12	0.014068009	19.3906	
Oct2 WL12	0.013289913	18.2967	
blank	-0.000308608	-0.4163	
low level	0.007063092	9.6377	
high level	0.838952864	1941.5494	
mid level	0.510868935	1049.6322	104.96

Casino Wetlands - Influent, Effluent, Substrates and Plants

	Casino Wetlands - In	fluent, Effluent, Substrat	es and Plants
Conditions	GF AAS	Standards source	SCP
Element/Wavelength	Se 196.03	QC Source	Perkin Elmer Mixed Std
Date	24/10/2014	QC Frequency	every 10 samples
Operator	HM	QC Limits	Low level: ±20%, High level: ±10%
Calibration equation	Nonlinear through zero	Correlation coefficient	0.9992
Detection Limit	0.68		
Sample ID	Absorbance (Corr)	Conc (ug/L)	QC Recovery (%)
blank	0.000487194		
1 ppb	0.001961169		
2 ppb	0.004667266		
5 ppb	0.012688935		
10 ppb	0.025438482		
25 ppb	0.062104194		
50 ppb	0.122908614		
Blank	-0.000453045	-0.1932	
low level	0.002183181	0.9297	92.97
high level	0.135461216	53.2238	106.45
Oct 2 WL2	0.00136311	≤0.68	
Oct 2 WL2	0.006912836	2.9351	
Oct 2 WL3	0.001318478	≤0.68	
Oct 2 WL5	-0.000331929	≤0.68	
Blank	-0.000262655	-0.1120	
low level	0.00258288	1.0996	109.96
high level	0.126856609	50.0931	100.19
Oct 2 WL6	0.00304865	1.2975	
Oct 2 WL8	0.002432184	1.0356	
Oct 2 WL9	0.002258739	0.9618	
Oct 2 WL11	0.000194264	≤0.68	
Oct 2 WL12	0.00085298		
Blank	-0.000364903	-0.1556	
low level	0.002145221		
high level	0.128834595		
0			
Conditions	GF AAS	Standards source	SCP
Element/Wavelength	Cu 324.75	QC Source	Perkin Elmer Mixed Std
Date	11/07/2014	QC Frequency	every 10 samples
Operator	IN	QC Limits	Low level: ±20%, High level: ±10%
Calibration equation	Nonlinear through zero	Correlation coefficient	0.9993/0.9999/0.9955
Detection Limit	0.57		
Sample ID	Absorbance (Corr)	Conc (ug/L)	QC Recovery (%)
blank	0.002084538		
0.5 ppb	0.001725028		
1 ppb	0.003593875		
2 ppb	0.007163194		
5 ppb	0.018541995		
10 ppb	0.038956882		
25	0.004750000		

0.094758603

25 ppb

Conditions		Standards source	
Conditions	GF AAS	Standards source	SCP Darkin Elmor Miyod Std
Element/Wavelength	Cu 324.75	QC Source	Perkin Elmer Mixed Std
Date	11/07/2014	QC Frequency	every 10 samples
Operator	IN No. I'm a share	QC Limits	Low level: ±20%, High level: ±10%
Calibration equation		Correlation coefficient	0.9993/0.9999/0.9955
Detection Limit	0.57		
Sample ID	Absorbance (Corr)	Conc (ug/L)	QC Recovery (%)
blank	0.00092491	0.2574	
low level	0.00191356		
high level	0.105185181		
2R 2R	0.015177904 0.022636752		
2S	0.03027003 0.016699025		
5R			
5S 8R	0.024164941		
88 85	0.050224222		
	0.022571161		
11R 11R	0.028621995	77.8477	
	0.002230765		
11S 12R	0.01577296		
blank	0.010733847		
low level	-0.000315004		
	0.001856548		
high level blank	0.106036971	27.1317	108.53
	0.003068128 0.000876996		
0.5 ppb	0.002850681		
1 ppb	0.002850081		
2 ppb 5 ppb	0.018063193		
10 ppb	0.018063195		
25 ppb	0.096132177		
12S	0.019568825	54.0344	
12S	0.019308823		
125 14R	0.020402003		
blank	-0.001784071	-1.9987	
low level	0.001514088		
high level	0.10756439		111.50
14S	0.015772361		
145 18R	0.017219664		
185	0.020258913		
20R	0.013427214		
205	0.022320825		
203 21R	0.022320823		
215	0.028090394		
213 25R	0.021479334		
blank	-0.001561816		
low level	0.001145679		
	0.0011450/9	0.4454	89.08

Conditions	GF AAS	Standards source	SCP
Element/Wavelength		QC Source	Perkin Elmer Mixed Std
Date	11/07/2014	QC Frequency	every 10 samples
Operator	IN	QC Limits	Low level: ±20%, High level: ±10%
Calibration equation		Correlation coefficient	0.9993/0.9999/0.9955
Detection Limit	0.57		
Sample ID	Absorbance (Corr)	Conc (ug/L)	QC Recovery (%)
high level	0.097862387		
25S	0.013482071		
25S	0.020953443		
26R	0.022963856		
26S	0.016790637	4.6880	
32R	0.012089984	3.4713	
32S	0.012077779	3.4681	
S1	0.052526041	13.8350	
S2	0.029578901	7.9708	
S3	0.027431697	7.4210	
B1	0.072017559	18.8092	
B2	0.216143871	55.5619	
B2	0.116198833	60.1562	
B2	0.116198833	60.1562	
blank	-0.000149757	-0.0702	
low level	0.001336869	0.5104	102.07
high level	0.097461777	25.2996	101.20
B3	0.075975091	19.8189	
B3	0.083663169	21.7801	
B2	0.006404558	19.7321	
P2R	0.448884188	114.8986	
P2R	0.235414511	120.9503	
P2R	0.011166671	12.9232	
P2S	0.020145441	5.5517	
P11R	0.010897535	3.1606	
P11S	0.014108302	3.9950	
P26R	0.02356283	6.4292	
P26S	0.019261555	5.3244	
blank	-0.001678355	-1.6410	
low level	0.001462204	0.5521	110.41
high level	0.098062842	25.4529	101.81
0.5 ppb	0.001791648		
1 ppb	0.004514763		
2 ppb	0.012082321		
5 ppb	0.019226983		
10 ppb	0.038921798		
25 ppb	0.104004945		
blank	-2.25E-05	-0.0048	
low level	0.002384256	0.5096	101.92
high level	0.0979602	24.4174	97.67

Conditions	GF AAS	Standards source	SCP
Element/Wavelength	Cu 324.75	QC Source	Perkin Elmer Mixed Std
Date	11/07/2014	QC Frequency	every 10 samples
Operator	IN	QC Limits	Low level: ±20%, High level: ±10%
Calibration equation	Nonlinear through zero	Correlation coefficient	0.9993/0.9999/0.9955
Detection Limit	0.57		
Sample ID	Absorbance (Corr)	Conc (ug/L)	QC Recovery (%)
P42R	0.017739006	3.8804	
P42S	0.014899893	3.2453	
P50R	0.017997169	3.9384	
P50S	0.00969844	2.0958	
P36R	0.017798024	3.8936	
P36R	0.013618135	2.9603	
P36S	0.018504839	4.0526	
blank	0.000142295	0.0303	
low level	0.002588355	0.5534	110.68
high level	0.100722546	25.2271	100.91

Element/Wavelength Cu 324.75 QC Source Perkin Elmer Mixed Std Date 11/12/2014 QC Frequency every 10 samples Operator IN QC Limits Low level: ±20%, High level: ±10% Calibration equatio Nonlinear through zero Ocorelation coefficient 0.9999/0.9998 Detection Limit 0.57 Conc (ug/L) QC Recovery (%) blank 0.00239559 Stample ID QC Recovery (%) 0.5 ppb 0.0001097302 Stample ID Stample ID 1 ppb 0.002559348 Stample ID Stample ID 2 ppb 0.0016282656 Stample ID Stample ID 10 ppb 0.033441745 Stample ID Stample ID 25 ppb 0.08878132 Intal 38 Stample ID Intal 38 high level 0.001402153 0.5719 Intal 38 high level 0.0016621973 Stal 39 Intal 38 Stample ID 0.00139415 34.3243 Intal 38 Stample ID 0.004057052 30.3710 Intal 38 S	Conditions	GF AAS	Standards source	SCP
Operator IN QC Limits Low level: ±20%, High level: ±10% Calibration equation Nonlinear through zero Correlation coefficient 0.9999/0.9998 Detection Limit 0.57 Sample ID Absorbance (Corr) Conc (ug/L) QC Recovery (%) blank 0.00239559 0.5 ppb 0.001097302 1 ppb 0.002559348 2 2 2 ppb 0.005894417 5 5 ppb 0.016282656 10 10 ppb 0.033441745 25 25 ppb 0.08878132 0.8878132 blank 0.000100366 0.0433 low level 0.001420153 0.5719 114.38 high level 0.093096118 26.1850 36R 0.0223021 67.9186 365 36S 0.01039415 34.3243 38R 0.009052253 30.3710 38S 0.014277105 45.5321 40R 0.039159023 114.6508 40S 0.040504892 118.3428	Element/Wavelength	Cu 324.75	QC Source	Perkin Elmer Mixed Std
Calibration equation Nonlinear through zero Correlation coefficient 0.9999/0.9998 Detection Limit 0.57 Sample ID Absorbance (Corr) Conc (ug/L) QC Recovery (%) blank 0.00239559 O.5 ppb 0.001097302 1 ppb 0.001097302 Qpb 0.0016282656 10 ppb 0.033441745 Sppb 0.033441745 25 ppb 0.08878132 Delank 0.000100366 0.0433 low level 0.001420153 0.5719 114.38 high level 0.0016621973 52.1900 36R 0.0223021 67.9186 36S 0.01039415 34.3243 388 0.00952253 30.3710 38S 0.014277105 45.5321 40R 0.039159023 114.6508 40S 0.040504892 118.3428 42R 0.013231625 42.5408 42S 0.011066815 36.2876 438 0.014596527 46.4430	Date	11/12/2014	QC Frequency	every 10 samples
Detection Limit 0.57 Sample ID Absorbance (Corr) Conc (ug/L) QC Recovery (%) blank 0.00239559 0.5 ppb 0.001097302 1 ppb 0.002559348 2 ppb 0.005894417 5 ppb 0.0016282656 10 ppb 0.033441745 25 ppb 0.08878132 0.001420153 0.5719 blank 0.000100366 0.0433 0.06719 low level 0.001420153 0.5719 114.38 high level 0.0016621973 52.1900 36R 0.0223021 67.9186 36S 0.01039415 34.3243 38R 0.009052253 30.3710 38S 0.014277105 45.5321 40R 0.039159023 114.6508 40S 0.040504892 118.3428 42R 0.013231625 42.5408 42S 0.011066815 36.2876 43R 0.014596527 46.4430	Operator	IN	QC Limits	Low level: ±20%, High level: ±10%
Sample IDAbsorbance (Corr)Conc (ug/L)QC Recovery (%)blank0.002395590.5 ppb0.0010973021 ppb0.0025593482 ppb0.0058944175 ppb0.01628265610 ppb0.03344174525 ppb0.08878132blank0.0001003660.0433104.74iow level0.0014201530.5719114.38high level0.022302167.918636R0.0162197332S0.01427710545.532140R0.03915902340R0.03915902340S0.04050489242R0.01323162542S0.01106681536.287643R0.01459652746.4430	Calibration equation	Nonlinear through zero	Correlation coefficient	0.9999/0.9998
blank 0.00239559 0.5 ppb 0.001097302 1 ppb 0.002559348 2 ppb 0.005894417 5 ppb 0.016282656 10 ppb 0.033441745 25 ppb 0.08878132 blank 0.000100366 0.0433 low level 0.001420153 0.5719 114.38 high level 0.093096118 26.1850 104.74 36R 0.016621973 52.1900 36R 0.02223021 67.9186 36S 0.01039415 34.3243 38R 0.009052253 30.3710 38S 0.014277105 45.5321 40R 0.039159023 114.6508 40S 0.040504892 118.3428 42R 0.013231625 42.5408 42S 0.011066815 36.2876 43R 0.014596527 46.4430	Detection Limit	0.57		
0.5 ppb0.0010973021 ppb0.0025593482 ppb0.0058944175 ppb0.01628265610 ppb0.03344174525 ppb0.08378132blank0.0001003660.0014201530.5719114.38high level0.0939611826 RS0.01662197336R0.0122302167.918636S0.0103941534.324338R0.0095225330.371038S0.01427710540R0.03915902340R0.03915902340R0.03915902340R0.03915902342S0.01106681536.287642S0.01106681543R0.01459652746.4430	Sample ID	Absorbance (Corr)	Conc (ug/L)	QC Recovery (%)
1 ppb0.0025593482 ppb0.0058944175 ppb0.01628265610 ppb0.03344174525 ppb0.08878132blank0.0001003660.04330.5719114.38high level0.014201530.09309611826.185036R0.01662197336R0.01662197336R0.01622302167.918636S0.0103941534.324338R0.00905225330.371038S0.01427710540R0.03915902340R0.03915902340S0.04050489242S0.01106681536.287643R0.01459652746.4430	blank	0.00239559		
2 ppb0.0058944175 ppb0.01628265610 ppb0.03344174525 ppb0.08878132blank0.0001003660.0433low level0.0014201530.5719high level0.09309611826.185036R0.01662197352.190036R0.022302167.918636S0.0103941534.324338R0.00905225330.371038S0.01427710545.532140R0.039159023114.650840S0.040504892118.342842R0.01323162542.540842S0.01106681536.287643R0.01459652746.4430	0.5 ppb	0.001097302		
5 ppb0.01628265610 ppb0.0334174525 ppb0.08878132blank0.0001003660.0433low level0.0014201530.5719114.380.09309611826.1850high level0.01662197352.190036R0.01222302167.918636S0.0103941534.324338R0.00905225330.371038S0.01427710545.532140R0.039159023114.650840S0.040504892118.342842R0.01323162542.540842S0.01106681536.287643R0.01459652746.4430	1 ppb	0.002559348		
10 ppb0.03344174525 ppb0.08878132blank0.0001003660.0433low level0.0014201530.5719high level0.09309611826.185036R0.01662197352.190036R0.0222302167.918636S0.0103941534.324338R0.00905225330.371038S0.01427710545.532140R0.039159023114.650840S0.040504892118.342842R0.01323162542.540842S0.01106681536.287643R0.01459652746.4430	2 ppb	0.005894417		
25 ppb0.08878132blank0.0001003660.0433low level0.0014201530.5719high level0.09309611826.185036R0.01662197352.190036R0.022302167.918636S0.0103941534.324338R0.00905225330.371038S0.01427710545.532140R0.039159023114.650840S0.040504892118.342842R0.01323162542.540842S0.01106681536.287643R0.01459652746.4430	5 ppb	0.016282656		
blank0.0001003660.0433low level0.0014201530.5719114.38high level0.09309611826.1850104.7436R0.01662197352.190036R36R0.0222302167.918636536S0.0103941534.324338R38R0.00905225330.371038540R0.039159023114.650840540S0.040504892118.342842R42R0.01323162542.540842543R0.01459652746.44304430	10 ppb	0.033441745		
low level0.0014201530.5719114.38high level0.09309611826.1850104.7436R0.01662197352.190036836S0.0103941534.324338838R0.00905225330.371038538S0.01427710545.532140840R0.039159023114.650842840S0.01323162542.540842842R0.01323162536.287643843R0.01459652746.443046.4430	25 ppb	0.08878132		
high level0.09309611826.1850104.7436R0.01662197352.190036R0.0222302167.918636S0.0103941534.324338R0.00905225330.371038S0.01427710545.532140R0.039159023114.650840S0.040504892118.342842R0.01323162542.540842S0.01106681536.287643R0.01459652746.4430	blank	0.000100366	0.0433	
36R0.01662197352.190036R0.0222302167.918636S0.0103941534.324338R0.00905225330.371038S0.01427710545.532140R0.039159023114.650840S0.040504892118.342842R0.01323162542.540842S0.01106681536.287643R0.01459652746.4430	low level	0.001420153	0.5719	114.38
36R0.0222302167.918636S0.0103941534.324338R0.00905225330.371038S0.01427710545.532140R0.039159023114.650840S0.040504892118.342842R0.01323162542.540842S0.01106681536.287643R0.01459652746.4430	high level	0.093096118	26.1850	104.74
36S0.0103941534.324338R0.00905225330.371038S0.01427710545.532140R0.039159023114.650840S0.040504892118.342842R0.01323162542.540842S0.01106681536.287643R0.01459652746.4430	36R	0.016621973	52.1900	
38R0.00905225330.371038S0.01427710545.532140R0.039159023114.650840S0.040504892118.342842R0.01323162542.540842S0.01106681536.287643R0.01459652746.4430	36R	0.02223021	67.9186	
38S0.01427710545.532140R0.039159023114.650840S0.040504892118.342842R0.01323162542.540842S0.01106681536.287643R0.01459652746.4430	36S	0.01039415	34.3243	
40R0.039159023114.650840S0.040504892118.342842R0.01323162542.540842S0.01106681536.287643R0.01459652746.4430	38R	0.009052253	30.3710	
40S0.040504892118.342842R0.01323162542.540842S0.01106681536.287643R0.01459652746.4430	38S	0.014277105	45.5321	
42R0.01323162542.540842S0.01106681536.287643R0.01459652746.4430	40R	0.039159023	114.6508	
42S0.01106681536.287643R0.01459652746.4430	40S	0.040504892	118.3428	
43R 0.014596527 46.4430	42R	0.013231625	42.5408	
	42S	0.011066815	36.2876	
	43R	0.014596527	46.4430	
435 0.014830786 47.1101	43S	0.014830786	47.1101	
blank 7.04E-05 0.0305	blank	7.04E-05	0.0305	

		nuent, Enluent, Substrat	
Conditions	GF AAS	Standards source	SCP
Element/Wavelength	Cu 324.75	QC Source	Perkin Elmer Mixed Std
Date	11/12/2014	QC Frequency	every 10 samples
Operator	IN	QC Limits	Low level: ±20%, High level: ±10%
Calibration equation	Nonlinear through zero	Correlation coefficient	0.9999/0.9998
Detection Limit	0.57		
Sample ID	Absorbance (Corr)	Conc (ug/L)	QC Recovery (%)
low level	0.001241068	0.5039	100.78
high level	0.097127928	27.2824	109.13
blank	0.002192108		
0.5 ppb	0.001844367		
1 ppb	0.003524253		
2 ppb	0.006557337		
5 ppb	0.016921205		
10 ppb	0.03611567		
25 ppb	0.09805002		
blank	0.000785158	0.2271	
low level	0.001542654	0.4458	89.17
high level	0.095427231	24.6116	98.45
47R	0.007003199	20.0992	
47R	0.013189139	37.5565	
47S	0.006480025	18.6101	
49R	0.020220383	57.0704	
49S	0.015978824	45.3402	
50R	0.018613442	52.6410	
50S	0.016589285	47.0361	
56R	0.009744753	27.8700	
56S	0.014479034	41.1623	
57R	0.000890611	2.5761	
57S	0.000543778	1.5736	
blank	-3.37E-05	-0.0098	
low level	0.001655702	0.4785	95.69
high level	0.096222314	24.7941	99.18
60R	0.018899864	53.4318	
60R	0.003398137	9.7977	
60S	0.001209984	3.4985	
62R	0.00693535	19.9062	
62S	0.000919556	2.6598	
S1	0.000194329	≤0.57	
S2	0.001063065	3.0743	
S3	-0.000354423		
B1	0.001332616		
B2	0.000993766		
B3	0.000573069		
blank	-0.000197967		
low level	0.001589567	0.4594	
high level	0.09821582	25.2501	
	0.05021502	23.2301	101.00

Conditions		Stenderde source	
Conditions	GF AAS Cu 324.75	Standards source	SCP Darkin Elmor Miyod Std
Element/Wavelength		QC Source	Perkin Elmer Mixed Std
Date	11/12/2014	QC Frequency	every 10 samples
Operator	IN Nonlinear through zero	QC Limits	Low level: ±20%, High level: ±10%
Calibration equation Detection Limit	Nonlinear through zero 0.57	Correlation coefficient	0.9999/0.9998
Sample ID	Absorbance (Corr)	Conc (ug/L)	QC Recovery (%)
S1	0.000651924		
S1	0.003128018		
57R	-0.000449681		
575	0.012964081		
62S	0.006378906		
S1	0.019584919		
S2	0.020781999		
S3	0.019615613		
57R	-0.00058176		
blank	0.000586839		
low level	0.002010394		
high level	0.098079503		
57R	0.000346623		
Oct2-Cont-Car	0.0046792	13.4692	
Oct2-Cont-Jun	0.005940063	17.0711	
Oct2-PitC-Car	0.003772748	108.7260	
Oct2-PitC-Jun	0.0008224	23.7905	
Oct2-TMF-Car	0.01160311	33.1067	
blank	0.000216849	0.0628	
low level	0.001413557	0.4086	81.72
high level	0.103192236	26.3795	105.52
Oct2-TMF-Jun	0.011849071	33.7979	
Oct2-Pit-Car	-0.00055869	≤0.57	
Oct2-Pit-Jun	-0.000767135	≤0.57	
blank	0.00041745	0.1208	
low level	0.001817681	0.5251	105.03
high level	0.104756743	26.7319	106.93
Oct2-Pit-Jun	-0.000188959	≤0.57	
Oct2-Pit-Car	-0.000520331	≤0.57	
57R	0.018950981	53.5729	
blank	0.000298669	0.0865	
low level	0.001675301	0.4841	96.82
high level	0.106841387	27.1996	108.80

Conditions	GF AA-MS	Standards source	SCP
Element/Wavelength	Cu 324.75	QC Source	Perkin Elmer Mixed Std
Date	13/11/2014	QC Frequency	every 10 samples
Operator	IN	QC Limits	Low level: ±20%, High level: ±10%
Calibration equation	Nonlinear through zero	Correlation coefficient	0.9997
Detection Limit	0.57		
Sample ID	Absorbance (Corr)	Conc (ug/L)	QC Recovery (%)
blank	0.002698205		
0.5 ppb	0.002096831		
1 ppb	0.00268443		
2 ppb	0.006416297		
5 ppb	0.016885123		
10 ppb	0.035039951		
25 ppb	0.090619001		
blank	5.22E-05	0.0151	
low level	0.001909017	0.5521	110.43
high level	0.094536353	26.3529	105.41
Oct2-TMF-Car	0.018338068	5.2687	
Oct2-Pit-Car	0.02229913	6.3965	
Oct2-Pit-Jun	0.02136957	6.1322	
blank	0.000800192	0.2315	
low level	0.001738996	0.5030	100.60
high level	0.092664172	25.8499	103.40
Conditions	GF AA-MS	Standards source	SCP
	GF AA-MS Se 196.03	Standards source QC Source	SCP Perkin Elmer Mixed Std
Element/Wavelength	Se 196.03	QC Source	Perkin Elmer Mixed Std
Element/Wavelength Date	Se 196.03 14/11/2014	QC Source QC Frequency QC Limits	Perkin Elmer Mixed Std every 10 samples
Element/Wavelength Date Operator	Se 196.03 14/11/2014 IN	QC Source QC Frequency QC Limits Correlation coefficient	Perkin Elmer Mixed Std every 10 samples Low level: ±20%, High level: ±10%
Element/Wavelength Date Operator Calibration equation	Se 196.03 14/11/2014 IN Nonlinear through zero	QC Source QC Frequency QC Limits	Perkin Elmer Mixed Std every 10 samples Low level: ±20%, High level: ±10%
Element/Wavelength Date Operator Calibration equation Detection Limit	Se 196.03 14/11/2014 IN Nonlinear through zero 0.68	QC Source QC Frequency QC Limits Correlation coefficient Conc (ug/L)	Perkin Elmer Mixed Std every 10 samples Low level: ±20%, High level: ±10% 0.9993
Element/Wavelength Date Operator Calibration equation Detection Limit Sample ID	Se 196.03 14/11/2014 IN Nonlinear through zero 0.68 Absorbance (Corr)	QC Source QC Frequency QC Limits Correlation coefficient Conc (ug/L)	Perkin Elmer Mixed Std every 10 samples Low level: ±20%, High level: ±10% 0.9993
Element/Wavelength Date Operator Calibration equation Detection Limit Sample ID blank	Se 196.03 14/11/2014 IN Nonlinear through zero 0.68 Absorbance (Corr) -0.00020016	QC Source QC Frequency QC Limits Correlation coefficient Conc (ug/L)	Perkin Elmer Mixed Std every 10 samples Low level: ±20%, High level: ±10% 0.9993
Element/Wavelength Date Operator Calibration equation Detection Limit Sample ID blank 1 ppb	Se 196.03 14/11/2014 IN Nonlinear through zero 0.68 Absorbance (Corr) -0.00020016 0.002202941	QC Source QC Frequency QC Limits Correlation coefficient Conc (ug/L)	Perkin Elmer Mixed Std every 10 samples Low level: ±20%, High level: ±10% 0.9993
Element/Wavelength Date Operator Calibration equation Detection Limit Sample ID blank 1 ppb 2 ppb	Se 196.03 14/11/2014 IN Nonlinear through zero 0.68 Absorbance (Corr) -0.00020016 0.002202941 0.005342407	QC Source QC Frequency QC Limits Correlation coefficient Conc (ug/L)	Perkin Elmer Mixed Std every 10 samples Low level: ±20%, High level: ±10% 0.9993
Element/Wavelength Date Operator Calibration equation Detection Limit Sample ID blank 1 ppb 2 ppb 5 ppb	Se 196.03 14/11/2014 IN Nonlinear through zero 0.68 Absorbance (Corr) -0.00020016 0.002202941 0.005342407 0.012240822	QC Source QC Frequency QC Limits Correlation coefficient Conc (ug/L)	Perkin Elmer Mixed Std every 10 samples Low level: ±20%, High level: ±10% 0.9993
Element/Wavelength Date Operator Calibration equation Detection Limit Sample ID blank 1 ppb 2 ppb 5 ppb 10 ppb	Se 196.03 14/11/2014 IN Nonlinear through zero 0.68 Absorbance (Corr) -0.00020016 0.002202941 0.005342407 0.012240822 0.026372351	QC Source QC Frequency QC Limits Correlation coefficient Conc (ug/L)	Perkin Elmer Mixed Std every 10 samples Low level: ±20%, High level: ±10% 0.9993
Element/Wavelength Date Operator Calibration equation Detection Limit Sample ID blank 1 ppb 2 ppb 5 ppb 10 ppb 25 ppb	Se 196.03 14/11/2014 IN Nonlinear through zero 0.68 Absorbance (Corr) -0.00020016 0.002202941 0.005342407 0.012240822 0.026372351 0.062275826	QC Source QC Frequency QC Limits Correlation coefficient Conc (ug/L)	Perkin Elmer Mixed Std every 10 samples Low level: ±20%, High level: ±10% 0.9993 QC Recovery (%)
Element/Wavelength Date Operator Calibration equation Detection Limit Sample ID blank 1 ppb 2 ppb 5 ppb 10 ppb 25 ppb 50 ppb	Se 196.03 14/11/2014 IN Nonlinear through zero 0.68 Absorbance (Corr) -0.00020016 0.002202941 0.005342407 0.012240822 0.026372351 0.062275826 0.115137247	QC Source QC Frequency QC Limits Correlation coefficient Conc (ug/L)	Perkin Elmer Mixed Std every 10 samples Low level: ±20%, High level: ±10% 0.9993 QC Recovery (%)
Element/Wavelength Date Operator Calibration equation Detection Limit Sample ID blank 1 ppb 2 ppb 5 ppb 10 ppb 25 ppb 50 ppb 50 ppb Blank	Se 196.03 14/11/2014 IN Nonlinear through zero 0.68 Absorbance (Corr) -0.00020016 0.002202941 0.005342407 0.012240822 0.026372351 0.062275826 0.115137247 -0.000263706	QC Source QC Frequency QC Limits Correlation coefficient Conc (ug/L)	Perkin Elmer Mixed Std every 10 samples Low level: ±20%, High level: ±10% 0.9993 QC Recovery (%)
Element/Wavelength Date Operator Calibration equation Detection Limit Sample ID blank 1 ppb 2 ppb 5 ppb 10 ppb 25 ppb 50 ppb Blank low level	Se 196.03 14/11/2014 IN Nonlinear through zero 0.68 Absorbance (Corr) -0.00020016 0.002202941 0.005342407 0.012240822 0.026372351 0.062275826 0.115137247 -0.000263706 0.002540199	QC Source QC Frequency QC Limits Correlation coefficient Conc (ug/L)	Perkin Elmer Mixed Std every 10 samples Low level: ±20%, High level: ±10% 0.9993 QC Recovery (%) 100.94 90.74
Element/Wavelength Date Operator Calibration equation Detection Limit Sample ID blank 1 ppb 2 ppb 5 ppb 10 ppb 25 ppb 50 ppb Blank low level high level	Se 196.03 14/11/2014 IN Nonlinear through zero 0.68 Absorbance (Corr) -0.00020016 0.002202941 0.005342407 0.012240822 0.026372351 0.062275826 0.115137247 -0.000263706 0.002540199 0.107689826	QC Source QC Frequency QC Limits Correlation coefficient Conc (ug/L) -0.1046 1.0094 45.3700 1.4441	Perkin Elmer Mixed Std every 10 samples Low level: ±20%, High level: ±10% 0.9993 QC Recovery (%) 100.94 90.74
Element/Wavelength Date Operator Calibration equation Detection Limit Sample ID blank 1 ppb 2 ppb 5 ppb 10 ppb 25 ppb 50 ppb Blank low level high level B1	Se 196.03 14/11/2014 IN Nonlinear through zero 0.68 Absorbance (Corr) -0.00020016 0.002202941 0.005342407 0.012240822 0.026372351 0.062275826 0.115137247 -0.000263706 0.002540199 0.107689826 0.00363194	QC Source QC Frequency QC Limits Correlation coefficient Conc (ug/L) -0.1046 1.0094 45.3700 1.4441	Perkin Elmer Mixed Std every 10 samples Low level: ±20%, High level: ±10% 0.9993 QC Recovery (%) 100.94 90.74
Element/Wavelength Date Operator Calibration equation Detection Limit Sample ID blank 1 ppb 2 ppb 5 ppb 10 ppb 25 ppb 50 ppb Blank low level high level B1 B2	Se 196.03 14/11/2014 IN Nonlinear through zero 0.68 Absorbance (Corr) -0.00020016 0.002202941 0.005342407 0.012240822 0.026372351 0.062275826 0.115137247 -0.000263706 0.002540199 0.107689826 0.00363194 0.002182959	QC Source QC Frequency QC Limits Correlation coefficient Conc (ug/L) Conc (ug/L)	Perkin Elmer Mixed Std every 10 samples Low level: ±20%, High level: ±10% 0.9993 QC Recovery (%) 100.94 90.74
Element/Wavelength Date Operator Calibration equation Detection Limit Sample ID blank 1 ppb 2 ppb 5 ppb 10 ppb 25 ppb 10 ppb 25 ppb 50 ppb Blank low level high level B1 B2 B3	Se 196.03 14/11/2014 IN Nonlinear through zero 0.68 Absorbance (Corr) -0.00020016 0.002202941 0.005342407 0.012240822 0.026372351 0.062275826 0.115137247 -0.000263706 0.002540199 0.107689826 0.00363194 0.002182959 0.003111839	QC Source QC Frequency QC Limits Correlation coefficient Conc (ug/L) Conc (ug/L)	Perkin Elmer Mixed Std every 10 samples Low level: ±20%, High level: ±10% 0.9993 QC Recovery (%) 100.94 90.74
Element/Wavelength Date Operator Calibration equation Detection Limit Sample ID blank 1 ppb 2 ppb 5 ppb 10 ppb 25 ppb 50 ppb 50 ppb Blank low level high level B1 B2 B3 S1	Se 196.03 14/11/2014 IN Nonlinear through zero 0.68 Absorbance (Corr) -0.00020016 0.002202941 0.005342407 0.012240822 0.026372351 0.026372351 0.062275826 0.115137247 -0.000263706 0.002540199 0.107689826 0.00363194 0.002182959 0.003111839 0.006581208	QC Source QC Frequency QC Limits Correlation coefficient Conc (ug/L) Conc (ug/L)	Perkin Elmer Mixed Std every 10 samples Low level: ±20%, High level: ±10% 0.9993 QC Recovery (%) 100.94 90.74

Conditions	GF AA-MS	Standards source	SCP
Element/Wavelength		QC Source	Perkin Elmer Mixed Std
Date	14/11/2014	QC Frequency	every 10 samples
Operator	IN	QC Limits	Low level: ±20%, High level: ±10%
Calibration equation	Nonlinear through zero	Correlation coefficient	0.9993
Detection Limit	0.68		
Sample ID	Absorbance (Corr)	Conc (ug/L)	QC Recovery (%)
high level	0.118990096		
S2	0.006154059		
S3	0.005412402		
P2R	0.008157373		
P2S	0.005014653		
P11R	0.006330826		
P11S	0.005926202		
P26R	0.005713715		
P26S	0.004913956		
2R	0.012396381		
2S	0.009741985	3.8864	
Blank	0.001254775		
low level	0.002653361	1.0545	
high level	0.117767398		
5R	0.02252169		
5S	0.003454532		
8R	0.045761731		
8S	0.010393169		
11R	0.019477787		
11S	0.009136588		
12R	0.019682828		
12S	0.014816684		
14R	0.017890041	7.1687	
14S	0.016351154	6.5465	
Blank	-0.000558103	-0.2214	
low level	0.002784676		
high level	0.123513826		
18R	0.018013391	7.2186	
18S	0.005918615		
20R	0.009058676		
20S	0.006308185		
21R	0.016957061	6.7914	
21S	0.005644038		
25R	0.004879355		
25S	0.005720097		
26R	0.007815612		
26S	0.012934033		
Blank	0.000159446		
low level	0.002462278		
high level	0.122751804	52.1654	104.33

Conditions	GF AA-MS	Standards source	SCP
Element/Wavelength	Se 196.03	QC Source	Perkin Elmer Mixed Std
Date	14/11/2014	QC Frequency	every 10 samples
Operator	IN	QC Limits	Low level: ±20%, High level: ±10%
Calibration equation	Nonlinear through zero	Correlation coefficient	0.9993
Detection Limit	0.68		
Sample ID	Absorbance (Corr)	Conc (ug/L)	QC Recovery (%)
32R	0.007268585	2.8958	
325	0.012415528	4.9602	2
Blank	-7.37E-05	-0.0292	
low level	0.002896816	1.1514	115.14
high level	0.124635842	53.0237	106.05
Conditions	GF AAS	Standards source	SCP
Element/Wavelength	Se 196.03	QC Source	Perkin Elmer Mixed Std
Date	21/1/2014	QC Frequency	every 10 samples
Operator	IN	QC Limits	Low level: ±20%, High level: ±10%
Calibration equation	Nonlinear through zero	Correlation coefficient	0.9998/0.9992
Detection Limit	0.68		
Sample ID	Absorbance (Corr)	Conc (ug/L)	QC Recovery (%)
blank	0.000654297		
1 ppb	0.002381765		
2 ppb	0.004384457		
5 ppb	0.010194361		
10 ppb	0.022043857		
25 ppb	0.056310803		
50 ppb	0.110146362		
Blank	-5.40E-05	-0.0243	
low level	0.001968726	0.8862	
high level	0.113881563	51.6465	
B1	-0.000368901	≤0.68	
B1	0.025803528	11.6341	
B2	-0.000117625	≤0.68	
B3	-7.52E-05	≤0.68	
S1	0.002382341	1.0725	
S2	0.001816988	0.8179	
S3	0.001131602	≤0.68	
36R	0.003968414		
36S	0.00249049	1.1212	
38R	0.004272275	1.9235	
38S	0.001478981	≤0.68	
Blank	-0.000706464	-0.3180	
low level	0.001996756	0.8989	
high level	0.120465209	54.6561	
		2 2011	
40R	0.005088691	2.2912	
40R 40R 40S	0.005088691 0.02926857 0.007241999	2.2912 13.1994 3.2612	L.

56R0.0036332221.594356S0.0127095335.526157R0.0025940361.139557S0.001458485≤0.6860R0.0056773922.486260S0.003304611.450662R0.0030921331.357662S-0.00188699≤0.68high level0.12870023850.0954Blank-0.00088139-0.3886low level0.002509461.1025P36R0.0339855214.4663P36S0.0021568890.9479P42R0.0069674833.0471			Ruent, Emuent, Substrat	
Date 21/1/2014 QC Frequency every 10 samples Operator IN QC Limits Low level: ±20%, High level: ±10% Calibration equation Nonlinear through zero Correlation coefficient 0.9998/0.9992 Detection Limit 0.68 0.002509036 1.1295 42R 0.002509036 1.1295 43R 0.003411661 1.5359 43S 0.00357278 2.9596 47R 0.002770528 1.2473 475 0.003988505 1.7957 49R 0.004683099 2.1085 49S 0.000797869 s.68 Blank -4.97E-05 -0.0224 low level 0.00194665 0.8760 87.60 ligh level 0.102814524 54.8159 109.63 blank 0.002579385 2 52 52 ppb 0.0060880264 50 50 0.00257385 2 52 ppb 0.011917518 1.1193 111.93 111.93 high level 0.120570385				
Operator IN QC Limits Low level: ±20%, High level: ±10% Calibration equation Nonlinear through zero Correlation coefficient 0.9998/0.9992 Detection Limit 0.68				
Calibration equation Nonlinear through zero Correlation coefficient 0.9998/0.9992 Sample ID Absorbance (Corr) Conc (ug/L) QC Recovery (%) 42R 0.002509036 1.1295 42S 0.003054619 1.3752 43R 0.00314161 1.5359 43S 0.000572578 2.9596 47R 0.002770528 1.2473 47S 0.000398805 1.7957 49R 0.0004683099 2.1085 49S 0.000797869 \$0.68 Blank -4.97E-05 -0.0224 low level 0.001946055 0.8760 87.60 bigh level 0.120814524 54.8159 109.63 blank 0.0001393501 2 2 2 ppb 0.004479326 5 5 5 ppb 0.011917518 10 10 10 pub 0.02257385 2.1284 5 50R 0.002486653 2.1281 5 50R 0.002594036 1.1193 <				
Detection Limit 0.68 Sample ID Absorbance (Corr) Conc (ug/L) QC Recovery (%) 42R 0.0032509036 1.1295 42S 0.0034619 1.3752 43R 0.006572578 2.9596 47R 0.002770528 1.2473 47S 0.003988505 1.7957 49R 0.000463099 2.1085 49S 0.000797869 s0.68 Blank -4.97E-05 -0.0224 low level 0.001946065 0.8760 10ylb 0.001939501 2 2 ppb 0.004479326 5 5 ppb 0.011917518 10 10 ppb 0.002547866 1.1193 10 ppb 0.002547866 1.1193 11.93 111.93 high level 0.12085133 2.1284 50R 0.004036332 1.184 50R 0.00259436 1.1395 575 0.001458455 s0.68 60R 0.00259436 1.1395	-			
Sample ID Absorbance (Corr) Conc (ug/L) QC Recovery (%) 42R 0.002509036 1.1295 42S 0.003054619 1.3752 43R 0.003111661 1.5359 43S 0.006572578 2.9596 47R 0.002770528 1.2473 475 0.003988505 1.7957 49R 0.004683099 2.1085 49S 0.000797869 \$0.68 Blank -4.975.05 -0.0224 low level 0.001946055 0.8760 87.60 bigh level 0.120814524 54.8159 109.63 blank -0.00194905 2.8760 2.8760 2 ppb 0.004479326 5 5 5 ppb 0.011917518 10 10 10 ppb 0.3247866 1.1193 111.93 high level 0.120561097 47.2749 94.55 50R 0.004259853 2.1284 54.55 50R 0.00295456 1.28018 555 <t< th=""><th></th><th></th><th>Correlation coefficient</th><th>0.9998/0.9992</th></t<>			Correlation coefficient	0.9998/0.9992
42R 0.002509036 1.1295 42S 0.003054619 1.3752 43R 0.003411661 1.5359 43S 0.002770528 1.2473 47S 0.002770528 1.2473 47S 0.00077869 ≤0.68 Blank -4.97E-05 -0.0224 low level 0.001946065 0.8760 87.60 ligh level 0.100379221 109.63 1 ppb 0.001939501 2 2pb 2 ppb 0.006880264 5 5 5 ppb 0.011917518 109.63 111.93 10 ppb 0.025793855 25 5 25 ppb 0.0004856353 2.1284 5 SOR 0.004856353 2.1284 5 SOR 0.002547866 1.1193 111.93 high level 0.12051097 47.2749 94.55 SOR 0.0025047866 1.8018 5 SOR 0.00259436 1.395 555 SOR 0.002594036 1.395 557 SOR 0.002594036				
425 0.003054619 1.3752 438 0.003411661 1.5359 438 0.002770528 2.4243 475 0.003988505 1.7957 498 0.004683099 2.085 498 0.000797869 <.068 Blank -4.97E-05 -0.0224 low level 0.001946065 0.8760 87.60 high level 0.120814524 54.8159 109.63 blank 0.00379221 109.63 109.63 1 ppb 0.00139501 109.63 109.63 2 ppb 0.004479326 109.63 109.63 5 ppb 0.011917518 109.65 109.63 10 ppb 0.02578385 109.63 11193 10 ppb 0.02597385 100.60 11193 111.93 high level 0.002597385 25 100.60 100.60 100.60 10 ppb 0.02597385 21.284 111.93 111.93 111.93 111.93 111.93 111.93 111.93 111.93 111.93 111.93 115.93 100.15 10	•			
43R 0.003411661 1.5359 43S 0.006572578 2.9596 47R 0.003988505 1.7473 47S 0.003988505 1.7557 49R 0.004683099 2.1085 49S 0.000797869 50.68 89A 0.001946065 0.8760 87.60 high level 0.001945052 50.8760 87.60 high level 0.120814524 54.8159 109.63 blank 0.000379221 50.68 50.68 2 ppb 0.004479326 50.72578 50.72578 2 ppb 0.000479355 50.725 50.725 5 ppb 0.011917518 50.72578 50.72578 50.72578 10 ppb 0.025793855 2.1284 50.75 50.7578 50.7578 50.7578 50.757 50.7578 50.75739				
43S 0.006572578 2.9596 47R 0.002770528 1.2473 47S 0.00398505 1.7957 49R 0.004683099 2.1085 49S 0.000797869 <0.68				
47R 0.002770528 1.2473 47S 0.003988505 1.7957 49R 0.004683099 2.1085 81ank -4.97E-05 -0.0224 low level 0.001946065 0.8760 87.60 high level 0.00193501 5 5 1 ppb 0.00139501 5 5 2 ppb 0.004479326 5 5 5 ppb 0.011917518 5 5 10 ppb 0.025793855 5 5 25 ppb 0.060880264 5 5 50 ppb 0.1134687601 11193 111.93 Blank -0.0025973855 2.1284 94.55 50R 0.004856353 2.1284 94.55 50R 0.004856353 2.1284 568 50.68 5568 50.68 5575 50.012709533 5.5261 5778 50.00330461 1.4506 567 50.68 5575 50.00330461 1.4506 567 50.68 568 50.68 568 50.6954 1.00.19 567 50.603 568 50.68 </td <td></td> <td></td> <td></td> <td></td>				
475 0.003988505 1.7957 498 0.004683099 2.1085 495 0.000797869 <0.024				
49R 0.004683099 2.1085 49S 0.000797869 <0.68				
49S 0.000797869 ≤0.68 Blank -4.97E-05 -0.0224 low level 0.001946065 0.8760 high level 0.120814524 54.8159 109.63 blank 0.000379221 1 1 2 ppb 0.00479366 1 1 2 ppb 0.00479326 1 1 5 ppb 0.011917518 1 1 10 ppb 0.02573855 1 1 50 ppb 0.134687601 1 111.93 blank -0.000959307 -0.4229 1 low level 0.002547866 1.1193 111.93 high level 0.120561097 47.2749 94.55 50R 0.004456353 2.1284 5 50S 0.004456353 5.261 5 50S 0.002594366 1.1395 5 57S 0.002594036 1.1395 5 57S 0.002594036 5.1261 5 60R 0.00302413 1.4506 5 62S 0.000302413 5.068				
Blank -4.97E-05 -0.0224 low level 0.001946065 0.8760 87.60 high level 0.120814524 54.8159 109.63 blank 0.000379221 - - 1 ppb 0.001939501 - - 2 ppb 0.004479326 - - 5 ppb 0.011917518 - - 10 ppb 0.025793855 - - 50 ppb 0.134687601 - - Blank -0.000959307 -0.4229 - - low level 0.002547866 1.1193 111.93 high level 0.120561097 47.2749 94.55 50R 0.004856353 2.1284 - 50S 0.000403869 <0.68				
low level0.0019460650.876087.60high level0.12081452454.8159109.63blank0.0003792211 ppb0.0019395012 ppb0.0044793265 ppb0.01191751810 ppb0.02579385525 ppb0.06088026450 ppb0.134687601Blank-0.000959307-0.4229low level0.0025478661.1193high level0.12056109747.274996.5594.5594.5550R0.0048563532.128450R0.0025918612.801850S0.000403869<0.68				
high level0.12081452454.8159109.63blank0.0003792211 ppb0.0013935012 ppb0.0044793265 ppb0.01191751810 ppb0.02573385525 ppb0.06088026450 ppb0.134687601Blank-0.00059307-0.42290low level0.0025478661.1193111.93high level0.12056109747.274994.5550R0.0048563532.128450R50R0.00485635351R0.0025931865280.00259335550.0127095335750.0014584855080.0127095335750.00145848560R0.0056773922.486260S0.0030921331.35766250.0018869950.68high level0.02509461.1025110.25P36R0.008595443.0161P36R0.00215688942R0.0069674833.0471				
blank 0.000379221 1 ppb 0.001939501 2 ppb 0.004479326 5 ppb 0.011917518 10 ppb 0.025793855 25 ppb 0.060880264 50 ppb 0.134687601 Blank -0.000959307 -0.4229 low level 0.002547866 1.1193 111.93 high level 0.120561097 47.2749 94.55 50R 0.004856353 2.1284 50R 0.002955186 12.8018 50S 0.000403869 <0.68 56R 0.003633222 1.5943 56S 0.012709533 5.5261 57R 0.002594036 1.1395 57S 0.001458485 <0.68 60R 0.005677392 2.4862 60S 0.00303461 1.4506 62R 0.00330461 1.4506 62R 0.00330461 1.4506 62R 0.00330461 1.4506 62R 0.00330461 1.4506 62R 0.003092133 1.3576 62S -0.00188699 <0.68 high level 0.128700238 50.0954 100.19 Blank -0.00088139 -0.3886 low level 0.0025946 3.0161 P36R 0.00389552 14.4663 P36S 0.002156889 0.9479 P42R 0.006967483 3.0471				
1 ppb 0.001939501 2 ppb 0.004479326 5 ppb 0.011917518 10 ppb 0.025793855 25 ppb 0.060880264 50 ppb 0.134687601 Blank -0.002547866 1.1193 high level 0.0120561097 47.2749 00w level 0.02955186 12.8018 50R 0.004836353 2.1284 50R 0.000403869 ≤0.68 50R 0.0012709533 5.5261 57R 0.002547865 1.1395 57S 0.001458485 ≤0.68 60R 0.00309213 1.1395 57S 0.001458485 ≤0.68 60R 0.005677392 2.4862 60S 0.00309413 1.3576 62S -0.00188699 ≤0.68 high level 0.12870238 50.0954 100.19 Blank -0.00088139 -0.3886 100.19 Blank -0.00088139 -0.3886 100.19 Blank -0.0025946 1.1025 110.25 936R	-		54.0159	109.05
Jpb 0.004479326 5 ppb 0.011917518 10 ppb 0.025793855 25 ppb 0.060880264 50 ppb 0.134687601 Blank -0.00959307 -0.4229 low level 0.002547866 1.1193 high level 0.120561097 47.2749 94.55 50R 0.004856353 2.1284 508 50R 0.00403869 ≤0.68 568 0.012709533 5.5261 57R 0.002594036 1.1395 575 0.001458485 ≤0.68 60R 0.005677392 2.4862 605 0.00330461 1.4506 627 0.00330461 1.4506 628 0.00330461 1.4506 628 0.00330461 1.4506 628 0.00330461 1.4506 628 0.0003092133 1.3576 625 0.00018869 ≤0.68 609 60.68 628				
5 ppb 0.011917518 10 ppb 0.025793855 25 ppb 0.060880264 50 ppb 0.134687601 Blank -0.000959307 -0.4229 low level 0.02547866 1.1193 111.93 high level 0.120561097 47.2749 94.55 50R 0.004856353 2.1284 508 50.68 508 50.68 508 50.68 568 0.003633222 1.5943 555 507. 0.0012709533 5.5261 575 50.0012709533 5.5261 575 50.001458485 ≤0.68 609 6.68				
10 ppb 0.025793855 25 ppb 0.060880264 50 ppb 0.134687601 Blank -0.000959307 -0.4229 low level 0.002547866 1.1193 111.93 high level 0.120561097 47.2749 94.55 50R 0.004856353 2.1284 508 50R 0.00403669 ≤0.68 568 50S 0.00403669 ≤0.68 568 56S 0.012709533 5.5261 578 57S 0.001458485 ≤0.68 608 60R 0.005677392 2.4862 605 628 0.003092133 1.3576 62S -0.000186699 <0.68				
25 ppb 0.060880264 50 ppb 0.134687601 Blank -0.00959307 -0.4229 low level 0.002547866 1.1193 high level 0.120561097 47.2749 50R 0.004856353 2.1284 50R 0.00043869 ≤0.68 50R 0.003633222 1.5943 50S 0.001458485 ≤0.68 57R 0.002594036 1.1395 57S 0.001458485 ≤0.68 60R 0.00330461 1.4506 62S 0.00330461 1.4506 62R 0.003092133 1.3576 62S -0.000188699 ≤0.68 high level 0.128700238 50.0954 62S -0.000188699 ≤0.68 high level 0.128700238 50.0954 100.19 Blank -0.000250946 1.1025 P36R 0.00250946 1.1025 P36R 0.00398552 14.4663 P36S 0.002156889 0.9479				
50 ppb 0.134687601 Blank -0.000959307 -0.4229 low level 0.002547866 1.1193 111.93 high level 0.120561097 47.2749 94.55 50R 0.004856353 2.1284 508 509 508 508 509 508 508 507 507 6001458485 50.68 508 508 508 508 508 508 508 508 509 508 509 508 508 509 508 508 509 508 508 509 508 509 508	••			
Blank -0.000959307 -0.4229 low level 0.002547866 1.1193 111.93 high level 0.120561097 47.2749 94.55 50R 0.004856353 2.1284 508 509 508 508 508 509 508 508 508 508 508 508 509 575 50001458485 \$0.68 509 508 508 508 509 508 508 508 508 508 509 508 508 508 509 508 508 509 508 508 509 508 508 508 509 508 508 508 508 508				
low level0.0025478661.1193111.93high level0.12056109747.274994.5550R0.0048563532.128450R0.02995518612.801850S0.000403869≤0.6856R0.0127095335.526157R0.0025940361.139557S0.001458485≤0.6860R0.0030921331.357662S-0.00188699≤0.68high level0.12870023850.0954high level0.12870023850.0954blank-0.00088139-0.3886low level0.002509461.1025P36R0.0339855214.4663P36S0.0021568890.9479P42R0.0069674833.0471			-0.4229	
high level0.12056109747.274994.5550R0.0048563532.128450R0.02995518612.801850S0.000403869≤0.6856R0.0036332221.594356S0.0127095335.526157R0.0025940361.139557S0.001458485≤0.6860R0.0036921331.357662S0.0030921331.357662S0.00188699<0.68				
50R0.0048563532.128450R0.02995518612.801850S0.000403869≤0.6856R0.0036332221.594356S0.0127095335.526157R0.0025940361.139557S0.001458485≤0.6860R0.0056773922.486260S0.0030921331.357662S-0.000188699<0.68				
50R0.02995518612.801850S0.000403869≤0.6856R0.0036332221.594356S0.0127095335.526157R0.0025940361.139557S0.001458485≤0.6860R0.0056773922.486260S0.0030921331.357662S-0.000188699≤0.68high level0.12870023850.0954100.19Blank-0.0088139-0.3886low level0.002509461.1025110.25P36R0.0339855214.4663P36SP36S0.0021568890.9479P42R0.0069674833.047110.019	-			
50S0.000403869≤0.6856R0.0036332221.594356S0.0127095335.526157R0.0025940361.139557S0.001458485≤0.6860R0.0056773922.486260S0.0030921331.357662S-0.00188699≤0.68high level0.12870023850.0954Blank-0.0088139-0.388610w level0.002509461.1025P36R0.0339855214.4663P36S0.0021568890.9479P42R0.0069674833.0471				
56S0.0127095335.526157R0.0025940361.139557S0.001458485≤0.6860R0.0056773922.486260S0.003304611.450662R0.0030921331.357662S-0.000188699≤0.68high level0.12870023850.0954Blank-0.00088139-0.3886low level0.002509461.1025P36R0.00339855214.4663P36S0.0021568890.9479P42R0.0069674833.0471	50S	0.000403869	≤0.68	
57R0.0025940361.139557S0.001458485≤0.6860R0.0056773922.486260S0.003304611.450662R0.0030921331.357662S-0.000188699≤0.68high level0.12870023850.0954Blank-0.00088139-0.3886low level0.002509461.1025P36R0.00339855214.4663P36S0.0021568890.9479P42R0.0069674833.0471	56R	0.003633222	1.5943	
57S0.001458485≤0.6860R0.0056773922.486260S0.003304611.450662R0.0030921331.357662S-0.000188699≤0.68high level0.12870023850.0954Blank-0.00088139-0.3886low level0.002509461.1025P36R0.00339855214.4663P36S0.0021568890.9479P42R0.0069674833.0471	56S	0.012709533	5.5261	
60R0.0056773922.486260S0.003304611.450662R0.0030921331.357662S-0.000188699≤0.68high level0.12870023850.0954Blank-0.00088139-0.3886low level0.002509461.1025P36R0.0068959443.0161P36R0.0339855214.4663P36S0.0021568890.9479P42R0.0069674833.0471	57R	0.002594036	1.1395	
60S0.003304611.450662R0.0030921331.357662S-0.000188699≤0.68high level0.12870023850.0954Blank-0.00088139-0.3886low level0.002509461.1025P36R0.0068959443.0161P36S0.0021568890.9479P42R0.0069674833.0471	57S	0.001458485	≤0.68	
62R0.0030921331.357662S-0.000188699≤0.68high level0.12870023850.0954Blank-0.00088139-0.3886low level0.002509461.1025P36R0.0068959443.0161P36S0.0021568890.9479P42R0.0069674833.0471	60R	0.005677392	2.4862	
62S-0.000188699≤0.68high level0.12870023850.0954100.19Blank-0.00088139-0.388610025094611025low level0.002509461.1025110.25P36R0.0068959443.0161110.25P36S0.0021568890.9479942RP42R0.0069674833.0471	60S	0.00330461	1.4506	
high level0.12870023850.0954100.19Blank-0.00088139-0.3886100.19low level0.002509461.1025110.25P36R0.0068959443.0161110.25P36S0.0021568890.947914.4663P42R0.0069674833.0471110.25	62R	0.003092133	1.3576	
Blank-0.00088139-0.3886low level0.002509461.1025P36R0.0068959443.0161P36R0.0339855214.4663P36S0.0021568890.9479P42R0.0069674833.0471	62S	-0.000188699	≤0.68	
low level0.002509461.1025110.25P36R0.0068959443.0161P36R0.0339855214.4663P36S0.0021568890.9479P42R0.0069674833.0471	high level	0.128700238	50.0954	100.19
P36R0.0068959443.0161P36R0.0339855214.4663P36S0.0021568890.9479P42R0.0069674833.0471	Blank	-0.00088139	-0.3886	
P36R0.0339855214.4663P36S0.0021568890.9479P42R0.0069674833.0471	low level	0.00250946	1.1025	110.25
P36S0.0021568890.9479P42R0.0069674833.0471	P36R	0.006895944	3.0161	
P42R 0.006967483 3.0471	P36R	0.03398552	14.4663	
	P36S	0.002156889	0.9479	
P42S 0.001854583 0.8153	P42R	0.006967483	3.0471	
	P42S	0.001854583	0.8153	

Conditions		Stondordo course	SCD
Conditions	GF AAS	Standards source	SCP
Element/Wavelength		QC Source	Perkin Elmer Mixed Std
Date	21/1/2014	QC Frequency	every 10 samples
Operator	IN	QC Limits	Low level: ±20%, High level: ±10%
Calibration equation		Correlation coefficient	0.9998/0.9992
Detection Limit	0.68		
Sample ID	Absorbance (Corr)	Conc (ug/L)	QC Recovery (%)
P50R	0.006433997	2.8153	
P50S	0.002478843	1.0890	
B1	0.029188528	12.4836	
B2	0.005825097	2.5505	
B3	0.005116343	2.2418	
S1	0.050722266	2123.9369	
Blank	0.000362586	0.1596	
low level	0.002383811	1.0474	104.74
high level	0.114828173	45.2631	90.53
S2	0.07577841	3097.7038	
S2	0.092068998	3706.3545	
S3	0.062205417	2576.0329	
Blank	0.000459274	0.2022	
low level	0.002713453	1.1918	
high level	0.115634496	45.5473	91.09
ingit level	0.113034490	5.57	51.05
Conditions	GF AAS	Standards source	SCP
conditions	01703	Standards Source	561
Flement/Wavelength	Cu 324 75		Perkin Elmer Mixed Std
Element/Wavelength	Cu 324.75	QC Source	Perkin Elmer Mixed Std
Date	24/11/2014	QC Frequency	every 10 samples
Date Operator	24/11/2014 IN	QC Frequency QC Limits	every 10 samples Low level: ±20%, High level: ±10%
Date Operator Calibration equation	24/11/2014 IN Nonlinear through zero	QC Frequency	every 10 samples Low level: ±20%, High level: ±10%
Date Operator Calibration equation Detection Limit	24/11/2014 IN Nonlinear through zero 0.57	QC Frequency QC Limits Correlation coefficient	every 10 samples Low level: ±20%, High level: ±10% 0.9994
Date Operator Calibration equation Detection Limit Sample ID	24/11/2014 IN Nonlinear through zero 0.57 Absorbance (Corr)	QC Frequency QC Limits	every 10 samples Low level: ±20%, High level: ±10%
Date Operator Calibration equation Detection Limit Sample ID blank	24/11/2014 IN Nonlinear through zero 0.57 Absorbance (Corr) 0.001191273	QC Frequency QC Limits Correlation coefficient	every 10 samples Low level: ±20%, High level: ±10% 0.9994
Date Operator Calibration equation Detection Limit Sample ID blank 0.5 ppb	24/11/2014 IN Nonlinear through zero 0.57 Absorbance (Corr) 0.001191273 0.003484426	QC Frequency QC Limits Correlation coefficient	every 10 samples Low level: ±20%, High level: ±10% 0.9994
Date Operator Calibration equation Detection Limit Sample ID blank 0.5 ppb 1 ppb	24/11/2014 IN Nonlinear through zero 0.57 Absorbance (Corr) 0.001191273 0.003484426 0.003840771	QC Frequency QC Limits Correlation coefficient	every 10 samples Low level: ±20%, High level: ±10% 0.9994
Date Operator Calibration equation Detection Limit Sample ID blank 0.5 ppb 1 ppb 2 ppb	24/11/2014 IN Nonlinear through zero 0.57 Absorbance (Corr) 0.001191273 0.003484426 0.003840771 0.008125533	QC Frequency QC Limits Correlation coefficient	every 10 samples Low level: ±20%, High level: ±10% 0.9994
DateOperatorCalibration equationDetection LimitSample IDblank0.5 ppb1 ppb2 ppb5 ppb	24/11/2014 IN Nonlinear through zero 0.57 Absorbance (Corr) 0.001191273 0.003484426 0.003840771 0.008125533 0.021762119	QC Frequency QC Limits Correlation coefficient	every 10 samples Low level: ±20%, High level: ±10% 0.9994
Date Operator Calibration equation Detection Limit Sample ID blank 0.5 ppb 1 ppb 2 ppb 5 ppb 10 ppb	24/11/2014 IN Nonlinear through zero 0.57 Absorbance (Corr) 0.001191273 0.003484426 0.003840771 0.008125533 0.021762119 0.046049765	QC Frequency QC Limits Correlation coefficient	every 10 samples Low level: ±20%, High level: ±10% 0.9994
Date Operator Calibration equation Detection Limit Sample ID blank 0.5 ppb 1 ppb 2 ppb 5 ppb 10 ppb 25 ppb	24/11/2014 IN Nonlinear through zero 0.57 Absorbance (Corr) 0.001191273 0.003484426 0.003840771 0.008125533 0.021762119 0.046049765 0.117747726	QC Frequency QC Limits Correlation coefficient	every 10 samples Low level: ±20%, High level: ±10% 0.9994
DateOperatorCalibration equationDetection LimitSample IDblank0.5 ppb1 ppb2 ppb5 ppb10 ppb25 ppb0.5 ppb0.5 ppb	24/11/2014 IN Nonlinear through zero 0.57 Absorbance (Corr) 0.001191273 0.003484426 0.003840771 0.008125533 0.021762119 0.046049765 0.117747726 0.002752097	QC Frequency QC Limits Correlation coefficient	every 10 samples Low level: ±20%, High level: ±10% 0.9994
DateOperatorCalibration equationDetection LimitSample IDblank0.5 ppb1 ppb2 ppb5 ppb10 ppb25 ppb0.5 ppb1 ppb25 ppb0.5 ppb1 ppb	24/11/2014 IN Nonlinear through zero 0.57 Absorbance (Corr) 0.001191273 0.003484426 0.003840771 0.008125533 0.021762119 0.046049765 0.117747726 0.002752097 0.004428422	QC Frequency QC Limits Correlation coefficient Conc (ug/L)	every 10 samples Low level: ±20%, High level: ±10% 0.9994 QC Recovery (%)
DateOperatorCalibration equationDetection LimitSample IDblank0.5 ppb1 ppb2 ppb5 ppb10 ppb25 ppb0.5 ppb1 ppb25 ppb0.5 ppb1 ppbblank0.5 ppb10 ppbblank0.5 ppb1 ppbblank	24/11/2014 IN Nonlinear through zero 0.57 Absorbance (Corr) 0.001191273 0.003484426 0.003840771 0.008125533 0.021762119 0.046049765 0.117747726 0.002752097 0.004428422 -0.000358457	QC Frequency QC Limits Correlation coefficient Conc (ug/L)	every 10 samples Low level: ±20%, High level: ±10% 0.9994 QC Recovery (%)
DateOperatorCalibration equationDetection LimitSample IDblank0.5 ppb1 ppb2 ppb5 ppb10 ppb25 ppb0.5 ppb1 ppbblank0.5 ppb1 ppbblank0.5 ppb1 ppbblanklow level	24/11/2014 IN Nonlinear through zero 0.57 Absorbance (Corr) 0.001191273 0.003484426 0.003840771 0.008125533 0.021762119 0.046049765 0.117747726 0.002752097 0.004428422 -0.000358457 0.002124163	QC Frequency QC Limits Correlation coefficient Conc (ug/L) -0.0767 0.4546	every 10 samples Low level: ±20%, High level: ±10% 0.9994 QC Recovery (%) 90.92
DateOperatorCalibration equationDetection LimitSample IDblank0.5 ppb1 ppb2 ppb5 ppb10 ppb25 ppb0.5 ppb1 ppb25 ppb0.5 ppb1 ppbblank0.5 ppb10 ppbblank0.5 ppb1 ppbblank	24/11/2014 IN Nonlinear through zero 0.57 Absorbance (Corr) 0.001191273 0.003484426 0.003840771 0.008125533 0.021762119 0.046049765 0.117747726 0.002752097 0.004428422 -0.000358457	QC Frequency QC Limits Correlation coefficient Conc (ug/L)	every 10 samples Low level: ±20%, High level: ±10% 0.9994 QC Recovery (%) 90.92
DateOperatorCalibration equationDetection LimitSample IDblank0.5 ppb1 ppb2 ppb5 ppb10 ppb25 ppb0.5 ppb1 ppbblank0.5 ppb1 ppbblank0.5 ppb1 ppbblanklow level	24/11/2014 IN Nonlinear through zero 0.57 Absorbance (Corr) 0.001191273 0.003484426 0.003840771 0.008125533 0.021762119 0.046049765 0.117747726 0.002752097 0.004428422 -0.000358457 0.002124163	QC Frequency QC Limits Correlation coefficient Conc (ug/L) -0.0767 0.4546	every 10 samples Low level: ±20%, High level: ±10% 0.9994 QC Recovery (%) 90.92 96.35
DateOperatorCalibration equationDetection LimitDetection LimitSample IDblank0.5 ppb1 ppb2 ppb5 ppb10 ppb25 ppb0.5 ppb1 ppbblank0.5 ppb10 ppbblanklow levelhigh level	24/11/2014 IN Nonlinear through zero 0.57 Absorbance (Corr) 0.001191273 0.003484426 0.003840771 0.008125533 0.021762119 0.046049765 0.117747726 0.002752097 0.004428422 -0.000358457 0.002124163 0.111021956	QC Frequency QC Limits Correlation coefficient Conc (ug/L) -0.0767 0.4546 24.0886	every 10 samples Low level: ±20%, High level: ±10% 0.9994 QC Recovery (%) 90.92 96.35
DateOperatorCalibration equationDetection LimitDetection LimitSample IDblank0.5 ppb1 ppb2 ppb5 ppb10 ppb25 ppb0.5 ppb1 ppbblanklow levelhigh levelblank	24/11/2014 IN Nonlinear through zero 0.57 Absorbance (Corr) 0.001191273 0.003484426 0.003840771 0.008125533 0.021762119 0.046049765 0.117747726 0.002752097 0.004428422 -0.000358457 0.002124163 0.111021956 3.11E-05	QC Frequency QC Limits Correlation coefficient Conc (ug/L) -0.0767 0.4546 24.0886 0.0067	every 10 samples Low level: ±20%, High level: ±10% 0.9994 QC Recovery (%) 90.92 96.35
DateOperatorCalibration equationDetection LimitSample IDblank0.5 ppb1 ppb2 ppb5 ppb10 ppb25 ppb0.5 ppb1 ppbblanklow levelhigh levelblank60S	24/11/2014 IN Nonlinear through zero 0.57 Absorbance (Corr) 0.001191273 0.003484426 0.003840771 0.008125533 0.021762119 0.046049765 0.117747726 0.002752097 0.002752097 0.004428422 -0.000358457 0.002124163 0.111021956 3.11E-05 0.184379167	QC Frequency QC Limits Correlation coefficient Conc (ug/L) -0.0767 0.4546 24.0886 0.0067 40.3804	every 10 samples Low level: ±20%, High level: ±10% 0.9994 QC Recovery (%) 90.92 96.35
DateOperatorCalibration equationDetection LimitDetection LimitSample IDblank0.5 ppb1 ppb2 ppb5 ppb10 ppb25 ppb0.5 ppb1 ppbblanklow levelhigh levelblank60S60S	24/11/2014 IN Nonlinear through zero 0.57 Absorbance (Corr) 0.001191273 0.003484426 0.003840771 0.008125533 0.021762119 0.046049765 0.117747726 0.002752097 0.004428422 -0.000358457 0.002124163 0.111021956 3.11E-05 0.184379167 0.091883052	QC Frequency QC Limits Correlation coefficient Conc (ug/L) Conc (ug/L)	every 10 samples Low level: ±20%, High level: ±10% 0.9994 QC Recovery (%) 90.92 96.35

-			
Conditions	GF AAS	Standards source	SCP
Element/Wavelength		QC Source	Perkin Elmer Mixed Std
Date	24/11/2014	QC Frequency	every 10 samples
Operator	IN	QC Limits	Low level: ±20%, High level: ±10%
Calibration equation	Nonlinear through zero	Correlation coefficient	0.9994
Detection Limit	0.57		
Sample ID	Absorbance (Corr)	Conc (ug/L)	QC Recovery (%)
high level	0.110857891	240.5248	
PCC1	0.053121876		
PCC2	0.044884359		
PCC3	0.048596695		
PCJ1	0.047110031		
PCJ2	0.033809339		
PCJ3	0.069497229		
PC1	0.043652316		
PC2	0.041805239		
PC3	0.038790883		
PJ1	0.076679274		
blank	0.000767867	16.4309	
low level	0.00230115	49.2498	
high level	0.106512755	230.9701	
PJ2	0.044726791		
PJ3	0.032088306		
TJ1	0.017245604		
TJ2	0.031294714		
TJ3	0.036325926		
TC1	0.016730862		
TC2	0.023094817		
TC3	0.0272307		
S1	0.678328741	158.5782	
S1	0.476221754	216.6808	
S1	0.272867797		
S1 blank	0.272867797		
low level	0.001017221		
	0.002606895 0.108826741	55.7956	
high level			
Sp1	0.141343407 0.070767537		
Sp1	0.143978066		
Sp2	0.072326005		
Sp2			
Sp3	0.135147768		
Sp3	0.067268036		
CC1	0.036050732		
CC2	0.028468853	6.1130	
CC3	0.029409602		
CJ1	0.014640894		
blank	0.00020317	4.3472	

Conditions	GF AAS	Standards source	SCP
Element/Wavelength		QC Source	Perkin Elmer Mixed Std
Date	24/11/2014	QC Frequency	every 10 samples
Operator	IN	QC Limits	Low level: ±20%, High level: ±10%
Calibration equation	Nonlinear through zero	Correlation coefficient	0.9994
Detection Limit	0.57		
Sample ID	Absorbance (Corr)	Conc (ug/L)	QC Recovery (%)
low level	0.002076432	44.4391	88.88
high level	0.110064756	238.7799	95.51
PreMin1	0.282778612	62.7200	
PreMin1	0.282778612	62.7200	
CJ2	0.03151509	6.7697	
CJ3	0.022825	4.8976	
B1	0.006628798	14.1948	
B2	0.006492568	1.3903	
B3	0.006450583	1.3813	
PreMud1	0.047272626	10.1746	
PreMud2	0.042616333	9.1671	
PreMud3	0.02123167	4.5548	
preMin1	0.016885969	3.6206	
blank	0.000251616	5.3838	
low level	0.00220291	47.1467	94.29
high level	0.112983028	245.2017	98.08
preMin2	0.020774893	4.4566	
PreMin3	0.022397624	4.8057	
blank	0.000458628	0.0981	
low level	0.00243592	0.5214	104.27
high level	0.118450715	25.7246	102.90
S3	0.113240776	24.5769	
S2	0.125168061	27.2066	
S2	0.063631361	27.4475	
S1	0.125014194	27.1727	
S1	0.06255466	26.9794	
blank	0.001107517	0.2370	
low level	0.002554003	0.5466	109.33
high level	0.12176247	26.4550	105.82

		indent, Ennuent, Substrat	
Conditions	GF AAS	Standards source	SCP
Element/Wavelength		QC Source	Perkin Elmer Mixed Std
Date	25/11/2014	QC Frequency	every 10 samples
Operator	IN	QC Limits	Low level: ±20%, High level: ±10%
Calibration equation	Nonlinear through zero	Correlation coefficient	0.9987
Detection Limit	0.68		
Sample ID	Absorbance (Corr)	Conc (ug/L)	QC Recovery (%)
blank	0.000798239		
1 ppb	0.002353703		
2 ppb	0.004167162		
5 ppb	0.009993193		
10 ppb	0.021883981		
25 ppb	0.055150505		
50 ppb	0.096837007		
Blank	0.000810504		
low level	0.001837857	0.8357	83.57
high level	0.09566737	47.9226	95.85
PCC1	0.002716392	123.6212	
PCC2	-0.000161921	≤0.68	
PCC3	0.002107249	95.8420	
PCC2	0.00711462	3.2519	
PCJ1	0.006618074	302.3455	
PCJ2	0.007679514	351.2055	
PCJ3	0.005870373	267.9888	
PC1	0.005069665	231.2528	
PC2	0.003638604	165.7409	
PC2	0.030776693	1440.4157	
PC3	0.004364084	198.9292	
Blank	-0.000786377	-0.3566	
low level	0.001815786	0.8256	82.56
high level	0.090900599	45.3008	90.60
S1	0.108711627	55.2376	
S1	0.040054384	37.8481	
PJ1	0.005337319	243.5262	
PJ2	0.00501984	228.9688	
PJ3	0.004709709	214.7572	
TJ1	0.003399502	154.8132	
TJ2	0.004152577	189.2486	
TJ3	0.003134844	142.7235	
TC1	0.005153422	235.0928	
TC2	0.004781828	218.0612	
Blank	0.000517368	0.2349	
low level	0.002152857	0.9792	97.92
high level	0.092745246		92.62
TC3	0.018120387	837.3443	
Sp1	0.067307052	3271.0892	
Sp2	0.064667841		
•	_	_	

a 11.1			
Conditions	GF AAS	Standards source	SCP
Element/Wavelength		QC Source	Perkin Elmer Mixed Std
Date	25/11/2014	QC Frequency	every 10 samples
Operator	IN	QC Limits	Low level: ±20%, High level: ±10%
Calibration equation	Nonlinear through zero	Correlation coefficient	0.9987
Detection Limit	0.68		
Sample ID	Absorbance (Corr)	Conc (ug/L)	QC Recovery (%)
Sp3	0.055989574	2689.0718	
CC1	0.004496873	205.0090	
CC2	0.003215413	146.4032	
CC3	0.003043217	138.5393	
CJ1	0.002879023	131.0434	
CJ2	0.002809783	127.8831	
CJ3	0.002758704	125.5520	
Blank	0.000390451	0.1773	
low level	0.002133496	0.9704	97.04
high level	0.099198713	49.8825	99.76
B1	0.075878726	3721.2003	
B2	0.012430788	571.1791	
B3	0.008493731	388.7551	
PreMud1	0.006981649	319.0700	
PreMud2	0.00520693	237.5463	
PreMud3	0.006384028	291.5857	
preMin1	0.00203522	92.5595	
preMin2	0.001837177	83.5364	
PreMin3	0.00193968	88.2061	
S3	0.074993951	3674.3610	
Blank	1.23E-05	0.0056	
low level	0.002145089	0.9757	97.57
high level	0.0927814	46.3321	92.66
S2	0.088716556	4410.8556	
S1	0.084485686	4181.4766	
Blank	-0.000173284	-0.0786	
low level	0.00185101	0.8417	84.17
high level	0.091274177	45.5053	91.01

		indent, Ennuent, Substrat	
Conditions	GF AAS	Standards source	SCP
Element/Wavelength	Cu 324.75	QC Source	Perkin Elmer Mixed Std
Date	12/03/2014	QC Frequency	every 10 samples
Operator	IN	QC Limits	Low level: ±20%, High level: ±10%
Calibration equation	Nonlinear through zero	Correlation coefficient	0.9991
Detection Limit	0.57		
Sample ID	Absorbance (Corr)	Conc (ug/L)	QC Recovery (%)
blank	0.001587511		
0.5 ppb	0.002121027		
1 ppb	0.004637727		
2 ppb	0.008500616		
5 ppb	0.017990999		
10 ppb	0.045343474		
25 ppb	0.118435827		
blank	0.001206153		
low level	0.002509736		
high level	0.104958433		
2R	0.009258871		
2S	0.007445809		
5R	0.015358993		
5S	0.016503203		
B1	0.00184378		
Std1	0.203354842		
Std1	0.099226104		
B2	0.003780381		
B3	0.002222143		
Std2	0.194827879		
Std2	0.101006217		
blank	0.00114433		
low level	0.002130544		100.50
high level	0.105393143		
Std2	0.018925585		
Std3	0.018336559		
CRM1	0.020309818		
CRM2	0.017540006		
CRM3	0.020177073		
8R	0.076677605		
8S	0.020418698		
11R	0.016721475		
11S	0.01418389		
12R	0.014709317		
blank	-0.000170869		
low level	0.001942261		
high level	0.10742539		92.41
Spike1	0.101789231		
12S	0.011967715		
14R	0.01648041	38.3647	

Conditions	GF AAS	Standards source	SCP
Element/Wavelength	Cu 324.75	QC Source	Perkin Elmer Mixed Std
Date	12/03/2014	QC Frequency	every 10 samples
Operator	IN	QC Limits	Low level: ±20%, High level: ±10%
Calibration equation	Nonlinear through zero	Correlation coefficient	0.9991
Detection Limit	0.57		
Sample ID	Absorbance (Corr)	Conc (ug/L)	QC Recovery (%)
14S	0.014197708	33.1194	
18R	0.013006057	30.3725	
18S	0.028187534	64.9280	
20R	0.020204899	46.8765	
20S	0.034276055	78.5233	
21R	0.03467285	79.4041	
21S	0.013149377	30.7031	
blank	-0.000149217	-0.0353	
low level	0.002451254	0.5780	115.60
high level	0.109426719	23.4924	93.97
25R	0.009729601	22.7891	
25S	0.017200275	40.0143	
26R	0.030860459	70.9147	
26S	0.011533823	26.9706	
32R	0.008622248	20.2158	
32S	0.008079646	18.9530	
Spk2	0.088263015	192.9040	
Spk3	0.107151741	230.4782	
blank	0.000813219	0.1920	
low level	0.002066159	0.4874	97.47
high level	0.10694554	23.0074	92.03

Conditions	GF AAS	Standards source	SCP
Element/Wavelength	Se 196.03	QC Source	Perkin Elmer Mixed Std
Date	12/08/2014	QC Frequency	every 10 samples
Operator	IN	QC Limits	Low level: ±20%, High level: ±10%
Calibration equation	Nonlinear through zero	Correlation coefficient	0.9951
Detection Limit	0.68		
Sample ID	Absorbance (Corr)	Conc (ug/L)	QC Recovery (%)
blank	0.000259518		
1 ppb	0.001571383		
2 ppb	0.003705629		
5 ppb	0.012170606		
10 ppb	0.023490547		
25 ppb	0.061833449		
50 ppb	0.11307452		
Blank	0.000130387	0.0622	<u>.</u>
low level	0.001700243	0.8100	81.00
high level	0.125251916	50.8903	101.78
2R	0.017887457	8.3328	

Canalities		Steedende seemes	
Conditions	GF AAS	Standards source	SCP
Element/Wavelength		QC Source	Perkin Elmer Mixed Std
Date	12/08/2014	QC Frequency	every 10 samples
Operator	IN III III	QC Limits	Low level: ±20%, High level: ±10%
Calibration equation	Nonlinear through zero	Correlation coefficient	0.9951
Detection Limit	0.68		
Sample ID	Absorbance (Corr)	Conc (ug/L)	QC Recovery (%)
2R	0.042294616	19.0676	
2S	0.009001922		
5R	0.021217985		
5S 8R	0.001784991		
8S	0.02952803 0.00417187		
85 11R	0.00417187		
11K 11S	0.009130092		
113 12R	0.013486987		
12K 12S	0.013480387		
Blank	0.000176873	0.0844	
low level	0.002022556	0.0844 0.9631	
high level	0.130910423	52.8335	
plantstd	0.060092694		
14R	0.05107107		
14S	0.007622652		
18R	0.013043162		
185	0.005536992		
20R	0.007771418		
205	0.002626617		
21R	0.011207938		
215	0.001528462	0.7283	
25R	0.002616591	1.2449	
Blank	-0.000366492	-0.1751	
low level	0.002039643	0.9712	97.12
high level	0.133798611	53.8153	107.63
255	0.004373988	2.0759	
26R	0.007032014	3.3251	
26S	0.004556726	2.1621	
32R	0.005484612	2.5990	
32S	0.179696435	68.5670	
32S	0.009925349	9.3490	
S1	0.001905883		
S2	0.00166515		
S3	0.002547492		
B1	-0.000305232		
Blank	-0.000772525	-0.3693	
low level	0.002155311		
high level	0.133112707		
B2	-0.000775337	≤0.68	

Conditions	GF AAS	Standards source	SCP
Element/Wavelength		QC Source	Perkin Elmer Mixed Std
Date	12/08/2014	QC Frequency	every 10 samples
Operator	IN	QC Limits	Low level: ±20%, High level: ±10%
Calibration equation	Nonlinear through zero	Correlation coefficient	0.9951
Detection Limit	0.68		
Sample ID	Absorbance (Corr)	Conc (ug/L)	QC Recovery (%)
B3	-0.000655707	≤0.68	
Std1	0.084597209	36.1204	
Std2	0.058146097	25.6763	
Std3	0.069860811	30.3887	
Spike1	0.05236324	23.2970	
Spike2	0.033792732	15.4078	
Spike3	0.0416624	18.7983	
Blank	-0.000284031	-0.1357	
low level	0.002023657	0.9636	96.36
high level	0.132026274	53.2136	106.43