Division of Applied Science & Management School of Science, Trades & Technology Winter2 011

COURSE OUTLINE

GEOG 250

Introduction to Geographic Information Systems

> 45 HOURS 3 CREDITS

PREPARED BY:

DATE: _____

Simon Lapointe & Adam Roth, Instructor

.

APPROVED BY:

DATE: _____

Shelagh Rowles, Dean

YUKON COLLEGE

Copyright September 2010

All right reserved. No part of this material covered by this copyright may be reproduced or utilized in any form or by any means, electronic or mechanical, traded, or rented or resold, without written permission from Yukon College.

Course Outline prepared by Dave Rogers 2010.

Yukon College P.O. Box 2799 Whitehorse, YT Y1A 5K4

GEOG 250: INTRODUCTION TO GEOGRAPHIC INFORMATION SYSTEMS (GIS)

Instructors : Simon Lapointe (Lecture) Classes: Time: Mobile: 335-2506

Adam Roth Lab: Time: Room: Tutorial: Time: Room: smnlapointe@gmail.com Monday 6:30-9:30 pm Room A2601

adamjohnroth@gmail.com Wednesday 6:00-9:00 pm A2702 (Computer Lab) Monday 5:00-6:30 pm A2704 (Computer Lab)

COURSE DESCRIPTION

This course provides an introduction to the fundamental theories and concepts of Geographic Information Systems (GIS). The course content will include data input, storage and editing, spatial data structures, analytical functions of a GIS, data output, management of GIS, and applications of GIS. Laboratory exercises will complement the theory presented in the lectures. Participants will use a commercial GIS software product (ArcGIS) and gain a reasonable proficiency with that package.

COURSE TRANSFER

SFU GEOG 3XX (3)UBC GEOG 200 level (3)UNBC GEOG 300 (3)UVIC GEOG 200 level (1.5)TRU GEOG 275 (3)TWU GEOG 390 (3)For current information on course transferability see http://www.bctransferguide.ca/

COURSE PREREQUISITES

- Broad working experience with the Windows operation environment on PCs and regular use of Windows based software applications.
- Understanding of mapped data through course work or experience with geographically referenced data

• Basic understanding of statistics

Note: students are encouraged to discuss their preparedness for this course with either instructor, but they can select themselves into the course if this is the only course they will take.

LEARNING OUTCOMES

After successfully completing this course the student will:

- understand how spatial data is input and analyzed in the GIS environment
- have a basic understanding of the nature of spatial data
- gain proficiency with a commercial GIS software package
- be familiar with the issues related to implementing and managing GIS technology

COURSE FORMAT (3-3)

The course will consist of 1 weekly lecture of 3 hours and 1 weekly lab (3 hours). Where appropriate, the lectures will be supplemented by videos, class discussions, and technical demonstrations.

Field trips to local GIS facilities may be scheduled during the term.

REQUIRED LAB

There is a scheduled 3 hour lab period per week. The laboratory exercises will take up a considerable amount of time and will require work outside of the scheduled lab hours, particularly for those students without any experience with GIS software. ArcINFO software version 9.3 is used to complete all lab assignments.

TUTORIAL / OPTIONAL LAB

A 2-hour optional lab time is scheduled each week in which students can continue to work on their weekly laboratory assignment with the assistance of a lab instructor.

ATTENDANCE

Attendance of lectures and labs is mandatory. A student may be dismissed from the course after being absent for more than 10% of the scheduled hours. Unauthorized absence for a lab period will normally result in a zero mark for that lab.

EVALUATION

Participants must pass <u>BOTH the Lab and Lecture component</u> in order to receive a passing grade for the course. There will be a two assignments and a final examination in the course. The laboratory mark will be based on participation and on weekly assignments (see the lab outline for more info). The course grade will be arrived at as follows:

Mid Term	25%
Quiz	10%
Labs	35%
Final Exam	30%

REQUIRED TEXT & MATERIALS

- *Geographic Information Systems and Science, Second Edition,* Paul Longley, Michael Goodchild, David Maguire, David Rhind, John Wiley and Sons, 2005
- *Getting to Know ArcGIS*, Ormsby *et al.* 2nd edition 2004
- Laboratory manual
 - Additional Readings may be made available and assigned throughout the term.
 - Computer account: each student is required to have a computer account for the duration of the winter term (\$50 fee)

COURSE SYLLABUS

WEEK		ТОРІС	CHAPTER
1.	Jan 10	Introduction	
2.	Jan 17	Introduction What is GIS?	1, 2
3.	Jan 24	Representing Geographic Phenomena Discrete Objects & Fields, scale Attribute types Georeferencing	3, 4
		Locating geographic phenomena Latitude, longitude UTM, North Projections, Coordinate Systems	4
4.	Jan 31	Geographic Data Models Raster/Vector Models GIS Software, Raster, Vector, Networks, Terrain Mapping (DEM/TIN), Topology	7,8
5.	Feb 7	Data CollectionPrimary and secondary dataGPS & Data formatsDatabase Management & MetadataQUIZ	9
6.	Feb 14	Map Design Cartography Map elements, figure-ground, type placement, design, colour theory	12
7.	Feb 21	Statistical Mapping Multivariate, Daysimetric, Choropleth	12
8.	Feb 28	GIS Analysis Buffers, Overlays, Querries, Measurements	13, 14, 15
9.	Mar 7	Mid-Term Exam	
10.	Mar 14	READING BREAK	

11. Mar 21	GIS & Spatial Decision Support, & Spatial Modeling with GIS Systems and Model Types	16
12. Mar 28	GIS Project Design, Management & Implementation Choosing & Implementing a GIS	17, 18
13. Apr 4	Uncertainty and Data Quality <i>Precision and accuracy</i>	6
14. Apr 11	REVIEW	
	FINAL EXAM – TO BE SCHEDULED	